docling/docs/examples/custom_convert.py

176 lines
5.9 KiB
Python
Raw Permalink Normal View History

import json
import logging
import time
from pathlib import Path
feat: new vlm-models support (#1570) * feat: adding new vlm-models support Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the transformers Signed-off-by: Peter Staar <taa@zurich.ibm.com> * got microsoft/Phi-4-multimodal-instruct to work Signed-off-by: Peter Staar <taa@zurich.ibm.com> * working on vlm's Signed-off-by: Peter Staar <taa@zurich.ibm.com> * refactoring the VLM part Signed-off-by: Peter Staar <taa@zurich.ibm.com> * all working, now serious refacgtoring necessary Signed-off-by: Peter Staar <taa@zurich.ibm.com> * refactoring the download_model Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added the formulate_prompt Signed-off-by: Peter Staar <taa@zurich.ibm.com> * pixtral 12b runs via MLX and native transformers Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added the VlmPredictionToken Signed-off-by: Peter Staar <taa@zurich.ibm.com> * refactoring minimal_vlm_pipeline Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the MyPy Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added pipeline_model_specializations file Signed-off-by: Peter Staar <taa@zurich.ibm.com> * need to get Phi4 working again ... Signed-off-by: Peter Staar <taa@zurich.ibm.com> * finalising last points for vlms support Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the pipeline for Phi4 Signed-off-by: Peter Staar <taa@zurich.ibm.com> * streamlining all code Signed-off-by: Peter Staar <taa@zurich.ibm.com> * reformatted the code Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixing the tests Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added the html backend to the VLM pipeline Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the static load_from_doctags Signed-off-by: Peter Staar <taa@zurich.ibm.com> * restore stable imports Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use AutoModelForVision2Seq for Pixtral and review example (including rename) Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove unused value Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * refactor instances of VLM models Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * skip compare example in CI Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use lowercase and uppercase only Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add new minimal_vlm example and refactor pipeline_options_vlm_model for cleaner import Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * rename pipeline_vlm_model_spec Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * move more argument to options and simplify model init Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add supported_devices Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove not-needed function Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * exclude minimal_vlm Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * missing file Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add message for transformers version Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * rename to specs Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use module import and remove MLX from non-darwin Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove hf_vlm_model and add extra_generation_args Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use single HF VLM model class Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove torch type Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add docs for vision models Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> --------- Signed-off-by: Peter Staar <taa@zurich.ibm.com> Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
2025-06-02 17:01:06 +02:00
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import (
PdfPipelineOptions,
)
from docling.document_converter import DocumentConverter, PdfFormatOption
_log = logging.getLogger(__name__)
def main():
logging.basicConfig(level=logging.INFO)
data_folder = Path(__file__).parent / "../../tests/data"
input_doc_path = data_folder / "pdf/2206.01062.pdf"
###########################################################################
# The following sections contain a combination of PipelineOptions
# and PDF Backends for various configurations.
# Uncomment one section at the time to see the differences in the output.
# PyPdfium without EasyOCR
# --------------------
# pipeline_options = PdfPipelineOptions()
# pipeline_options.do_ocr = False
# pipeline_options.do_table_structure = True
# pipeline_options.table_structure_options.do_cell_matching = False
# doc_converter = DocumentConverter(
# format_options={
# InputFormat.PDF: PdfFormatOption(
# pipeline_options=pipeline_options, backend=PyPdfiumDocumentBackend
# )
# }
# )
# PyPdfium with EasyOCR
# -----------------
# pipeline_options = PdfPipelineOptions()
# pipeline_options.do_ocr = True
# pipeline_options.do_table_structure = True
# pipeline_options.table_structure_options.do_cell_matching = True
# doc_converter = DocumentConverter(
# format_options={
# InputFormat.PDF: PdfFormatOption(
# pipeline_options=pipeline_options, backend=PyPdfiumDocumentBackend
# )
# }
# )
# Docling Parse without EasyOCR
# -------------------------
# pipeline_options = PdfPipelineOptions()
# pipeline_options.do_ocr = False
# pipeline_options.do_table_structure = True
# pipeline_options.table_structure_options.do_cell_matching = True
# doc_converter = DocumentConverter(
# format_options={
# InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
# }
# )
# Docling Parse with EasyOCR
# ----------------------
pipeline_options = PdfPipelineOptions()
pipeline_options.do_ocr = True
pipeline_options.do_table_structure = True
pipeline_options.table_structure_options.do_cell_matching = True
feat: Introduce support for GPU Accelerators (#593) * Upgraded Layout Postprocessing, sending old code back to ERZ Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Implement hierachical cluster layout processing Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Pass nested cluster processing through full pipeline Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Pass nested clusters through GLM as payload Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Move to_docling_document from ds-glm to this repo Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Clean up imports again Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * feat(Accelerator): Introduce options to control the num_threads and device from API, envvars, CLI. - Introduce the AcceleratorOptions, AcceleratorDevice and use them to set the device where the models run. - Introduce the accelerator_utils with function to decide the device and resolve the AUTO setting. - Refactor the way how the docling-ibm-models are called to match the new init signature of models. - Translate the accelerator options to the specific inputs for third-party models. - Extend the docling CLI with parameters to set the num_threads and device. - Add new unit tests. - Write new example how to use the accelerator options. * fix: Improve the pydantic objects in the pipeline_options and imports. Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com> * fix: TableStructureModel: Refactor the artifacts path to use the new structure for fast/accurate model Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com> * Updated test ground-truth Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Updated test ground-truth (again), bugfix for empty layout Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * fix: Do proper check to set the device in EasyOCR, RapidOCR. Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com> * Rollback changes from main Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Update test gt Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Remove unused debug settings Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Review fixes Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Nail the accelerator defaults for MPS Signed-off-by: Christoph Auer <cau@zurich.ibm.com> --------- Signed-off-by: Christoph Auer <cau@zurich.ibm.com> Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com> Co-authored-by: Christoph Auer <cau@zurich.ibm.com> Co-authored-by: Christoph Auer <60343111+cau-git@users.noreply.github.com>
2024-12-13 17:45:22 +01:00
pipeline_options.ocr_options.lang = ["es"]
pipeline_options.accelerator_options = AcceleratorOptions(
num_threads=4, device=AcceleratorDevice.AUTO
feat: Introduce support for GPU Accelerators (#593) * Upgraded Layout Postprocessing, sending old code back to ERZ Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Implement hierachical cluster layout processing Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Pass nested cluster processing through full pipeline Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Pass nested clusters through GLM as payload Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Move to_docling_document from ds-glm to this repo Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Clean up imports again Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * feat(Accelerator): Introduce options to control the num_threads and device from API, envvars, CLI. - Introduce the AcceleratorOptions, AcceleratorDevice and use them to set the device where the models run. - Introduce the accelerator_utils with function to decide the device and resolve the AUTO setting. - Refactor the way how the docling-ibm-models are called to match the new init signature of models. - Translate the accelerator options to the specific inputs for third-party models. - Extend the docling CLI with parameters to set the num_threads and device. - Add new unit tests. - Write new example how to use the accelerator options. * fix: Improve the pydantic objects in the pipeline_options and imports. Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com> * fix: TableStructureModel: Refactor the artifacts path to use the new structure for fast/accurate model Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com> * Updated test ground-truth Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Updated test ground-truth (again), bugfix for empty layout Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * fix: Do proper check to set the device in EasyOCR, RapidOCR. Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com> * Rollback changes from main Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Update test gt Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Remove unused debug settings Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Review fixes Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Nail the accelerator defaults for MPS Signed-off-by: Christoph Auer <cau@zurich.ibm.com> --------- Signed-off-by: Christoph Auer <cau@zurich.ibm.com> Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com> Co-authored-by: Christoph Auer <cau@zurich.ibm.com> Co-authored-by: Christoph Auer <60343111+cau-git@users.noreply.github.com>
2024-12-13 17:45:22 +01:00
)
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
# Docling Parse with EasyOCR (CPU only)
# ----------------------
# pipeline_options = PdfPipelineOptions()
# pipeline_options.do_ocr = True
# pipeline_options.ocr_options.use_gpu = False # <-- set this.
# pipeline_options.do_table_structure = True
# pipeline_options.table_structure_options.do_cell_matching = True
# doc_converter = DocumentConverter(
# format_options={
# InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
# }
# )
# Docling Parse with Tesseract
# ----------------------
# pipeline_options = PdfPipelineOptions()
# pipeline_options.do_ocr = True
# pipeline_options.do_table_structure = True
# pipeline_options.table_structure_options.do_cell_matching = True
# pipeline_options.ocr_options = TesseractOcrOptions()
# doc_converter = DocumentConverter(
# format_options={
# InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
# }
# )
# Docling Parse with Tesseract CLI
# ----------------------
# pipeline_options = PdfPipelineOptions()
# pipeline_options.do_ocr = True
# pipeline_options.do_table_structure = True
# pipeline_options.table_structure_options.do_cell_matching = True
# pipeline_options.ocr_options = TesseractCliOcrOptions()
# doc_converter = DocumentConverter(
# format_options={
# InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
# }
# )
feat: add support for `ocrmac` OCR engine on macOS (#276) * feat: add support for `ocrmac` OCR engine on macOS - Integrates `ocrmac` as an OCR engine option for macOS users. - Adds configuration options and dependencies for `ocrmac`. - Updates documentation to reflect new engine support. This change allows macOS users to utilize `ocrmac` for improved OCR performance and compatibility. Signed-off-by: Suhwan Seo <nuridol@gmail.com> * updated the poetry lock Signed-off-by: Suhwan Seo <nuridol@gmail.com> * Fix linting issues, update CLI docs, and add error for ocrmac use on non-Mac systems - Resolved formatting and linting issues - Updated `--ocr-engine` CLI option documentation for `ocrmac` - Added RuntimeError for attempts to use `ocrmac` on non-Mac platforms Signed-off-by: Suhwan Seo <nuridol@gmail.com> * feat: add support for `ocrmac` OCR engine on macOS - Integrates `ocrmac` as an OCR engine option for macOS users. - Adds configuration options and dependencies for `ocrmac`. - Updates documentation to reflect new engine support. This change allows macOS users to utilize `ocrmac` for improved OCR performance and compatibility. Signed-off-by: Suhwan Seo <nuridol@gmail.com> * docs: update examples and installation for ocrmac support - Added `OcrMacOptions` to `custom_convert.py` and `full_page_ocr.py` examples. - Included usage comments and examples for `OcrMacOptions` in OCR pipelines. - Updated installation guide to include instructions for installing `ocrmac`, noting macOS version requirements (10.15+). - Highlighted that `ocrmac` leverages Apple's Vision framework as an OCR backend. This enhances documentation for users working on macOS to leverage `ocrmac` effectively. Signed-off-by: Suhwan Seo <nuridol@gmail.com> * fix: update `ocrmac` dependency with macOS-specific marker - Added `sys_platform == 'darwin'` marker to the `ocrmac` dependency in `pyproject.toml` to specify macOS compatibility. - Updated the content hash in `poetry.lock` to reflect the changes. This ensures the `ocrmac` dependency is only installed on macOS systems. Signed-off-by: Suhwan Seo <nuridol@gmail.com> --------- Signed-off-by: Suhwan Seo <nuridol@gmail.com> Co-authored-by: Suhwan Seo <nuridol@gmail.com>
2024-11-20 20:51:19 +09:00
# Docling Parse with ocrmac(Mac only)
# ----------------------
# pipeline_options = PdfPipelineOptions()
# pipeline_options.do_ocr = True
# pipeline_options.do_table_structure = True
# pipeline_options.table_structure_options.do_cell_matching = True
# pipeline_options.ocr_options = OcrMacOptions()
# doc_converter = DocumentConverter(
# format_options={
# InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
# }
# )
###########################################################################
start_time = time.time()
conv_result = doc_converter.convert(input_doc_path)
end_time = time.time() - start_time
_log.info(f"Document converted in {end_time:.2f} seconds.")
## Export results
output_dir = Path("scratch")
output_dir.mkdir(parents=True, exist_ok=True)
doc_filename = conv_result.input.file.stem
# Export Deep Search document JSON format:
with (output_dir / f"{doc_filename}.json").open("w", encoding="utf-8") as fp:
fp.write(json.dumps(conv_result.document.export_to_dict()))
# Export Text format:
with (output_dir / f"{doc_filename}.txt").open("w", encoding="utf-8") as fp:
fp.write(conv_result.document.export_to_text())
# Export Markdown format:
with (output_dir / f"{doc_filename}.md").open("w", encoding="utf-8") as fp:
fp.write(conv_result.document.export_to_markdown())
# Export Document Tags format:
with (output_dir / f"{doc_filename}.doctags").open("w", encoding="utf-8") as fp:
fp.write(conv_result.document.export_to_document_tokens())
if __name__ == "__main__":
main()