mirror of
https://github.com/docling-project/docling.git
synced 2025-06-27 05:20:05 +00:00
97 lines
3.0 KiB
Python
97 lines
3.0 KiB
Python
![]() |
import json
|
||
|
import time
|
||
|
from pathlib import Path
|
||
|
|
||
|
import yaml
|
||
|
|
||
|
from docling.datamodel.base_models import InputFormat
|
||
|
from docling.datamodel.pipeline_options import (
|
||
|
AcceleratorDevice,
|
||
|
VlmPipelineOptions,
|
||
|
granite_vision_vlm_conversion_options,
|
||
|
smoldocling_vlm_conversion_options,
|
||
|
)
|
||
|
from docling.datamodel.settings import settings
|
||
|
from docling.document_converter import DocumentConverter, PdfFormatOption
|
||
|
from docling.pipeline.vlm_pipeline import VlmPipeline
|
||
|
|
||
|
sources = [
|
||
|
"tests/data/2305.03393v1-pg9-img.png",
|
||
|
]
|
||
|
|
||
|
## Use experimental VlmPipeline
|
||
|
pipeline_options = VlmPipelineOptions()
|
||
|
# If force_backend_text = True, text from backend will be used instead of generated text
|
||
|
pipeline_options.force_backend_text = False
|
||
|
|
||
|
## On GPU systems, enable flash_attention_2 with CUDA:
|
||
|
# pipeline_options.accelerator_options.device = AcceleratorDevice.CUDA
|
||
|
# pipeline_options.accelerator_options.cuda_use_flash_attention2 = True
|
||
|
|
||
|
## Pick a VLM model. We choose SmolDocling-256M by default
|
||
|
pipeline_options.vlm_options = smoldocling_vlm_conversion_options
|
||
|
|
||
|
## Alternative VLM models:
|
||
|
# pipeline_options.vlm_options = granite_vision_vlm_conversion_options
|
||
|
|
||
|
from docling_core.types.doc import DocItemLabel, ImageRefMode
|
||
|
from docling_core.types.doc.document import DEFAULT_EXPORT_LABELS
|
||
|
|
||
|
## Set up pipeline for PDF or image inputs
|
||
|
converter = DocumentConverter(
|
||
|
format_options={
|
||
|
InputFormat.PDF: PdfFormatOption(
|
||
|
pipeline_cls=VlmPipeline,
|
||
|
pipeline_options=pipeline_options,
|
||
|
),
|
||
|
InputFormat.IMAGE: PdfFormatOption(
|
||
|
pipeline_cls=VlmPipeline,
|
||
|
pipeline_options=pipeline_options,
|
||
|
),
|
||
|
}
|
||
|
)
|
||
|
|
||
|
out_path = Path("scratch")
|
||
|
out_path.mkdir(parents=True, exist_ok=True)
|
||
|
|
||
|
for source in sources:
|
||
|
start_time = time.time()
|
||
|
print("================================================")
|
||
|
print("Processing... {}".format(source))
|
||
|
print("================================================")
|
||
|
print("")
|
||
|
|
||
|
res = converter.convert(source)
|
||
|
|
||
|
print("------------------------------------------------")
|
||
|
print("MD:")
|
||
|
print("------------------------------------------------")
|
||
|
print("")
|
||
|
print(res.document.export_to_markdown())
|
||
|
|
||
|
for page in res.pages:
|
||
|
print("")
|
||
|
print("Predicted page in DOCTAGS:")
|
||
|
print(page.predictions.vlm_response.text)
|
||
|
|
||
|
res.document.save_as_html(
|
||
|
filename=Path("{}/{}.html".format(out_path, res.input.file.stem)),
|
||
|
image_mode=ImageRefMode.REFERENCED,
|
||
|
labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE],
|
||
|
)
|
||
|
|
||
|
with (out_path / f"{res.input.file.stem}.json").open("w") as fp:
|
||
|
fp.write(json.dumps(res.document.export_to_dict()))
|
||
|
|
||
|
pg_num = res.document.num_pages()
|
||
|
|
||
|
print("")
|
||
|
inference_time = time.time() - start_time
|
||
|
print(
|
||
|
f"Total document prediction time: {inference_time:.2f} seconds, pages: {pg_num}"
|
||
|
)
|
||
|
|
||
|
print("================================================")
|
||
|
print("done!")
|
||
|
print("================================================")
|