2025-04-10 10:03:04 -06:00
|
|
|
import logging
|
|
|
|
import os
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import requests
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
from docling.datamodel.base_models import InputFormat
|
|
|
|
from docling.datamodel.pipeline_options import (
|
|
|
|
VlmPipelineOptions,
|
|
|
|
)
|
2025-06-02 17:01:06 +02:00
|
|
|
from docling.datamodel.pipeline_options_vlm_model import ApiVlmOptions, ResponseFormat
|
2025-04-10 10:03:04 -06:00
|
|
|
from docling.document_converter import DocumentConverter, PdfFormatOption
|
|
|
|
from docling.pipeline.vlm_pipeline import VlmPipeline
|
|
|
|
|
2025-06-12 05:58:44 -05:00
|
|
|
### Example of ApiVlmOptions definitions
|
|
|
|
|
|
|
|
#### Using LM Studio
|
|
|
|
|
|
|
|
|
|
|
|
def lms_vlm_options(model: str, prompt: str, format: ResponseFormat):
|
|
|
|
options = ApiVlmOptions(
|
|
|
|
url="http://localhost:1234/v1/chat/completions", # the default LM Studio
|
|
|
|
params=dict(
|
|
|
|
model=model,
|
|
|
|
),
|
|
|
|
prompt=prompt,
|
|
|
|
timeout=90,
|
|
|
|
scale=1.0,
|
|
|
|
response_format=format,
|
|
|
|
)
|
|
|
|
return options
|
|
|
|
|
|
|
|
|
|
|
|
#### Using Ollama
|
|
|
|
|
2025-04-10 10:03:04 -06:00
|
|
|
|
|
|
|
def ollama_vlm_options(model: str, prompt: str):
|
|
|
|
options = ApiVlmOptions(
|
|
|
|
url="http://localhost:11434/v1/chat/completions", # the default Ollama endpoint
|
|
|
|
params=dict(
|
|
|
|
model=model,
|
|
|
|
),
|
|
|
|
prompt=prompt,
|
|
|
|
timeout=90,
|
|
|
|
scale=1.0,
|
|
|
|
response_format=ResponseFormat.MARKDOWN,
|
|
|
|
)
|
|
|
|
return options
|
|
|
|
|
|
|
|
|
2025-06-12 05:58:44 -05:00
|
|
|
#### Using a cloud service like IBM watsonx.ai
|
|
|
|
|
|
|
|
|
2025-04-10 10:03:04 -06:00
|
|
|
def watsonx_vlm_options(model: str, prompt: str):
|
|
|
|
load_dotenv()
|
|
|
|
api_key = os.environ.get("WX_API_KEY")
|
|
|
|
project_id = os.environ.get("WX_PROJECT_ID")
|
|
|
|
|
|
|
|
def _get_iam_access_token(api_key: str) -> str:
|
|
|
|
res = requests.post(
|
|
|
|
url="https://iam.cloud.ibm.com/identity/token",
|
|
|
|
headers={
|
|
|
|
"Content-Type": "application/x-www-form-urlencoded",
|
|
|
|
},
|
|
|
|
data=f"grant_type=urn:ibm:params:oauth:grant-type:apikey&apikey={api_key}",
|
|
|
|
)
|
|
|
|
res.raise_for_status()
|
|
|
|
api_out = res.json()
|
|
|
|
print(f"{api_out=}")
|
|
|
|
return api_out["access_token"]
|
|
|
|
|
|
|
|
options = ApiVlmOptions(
|
|
|
|
url="https://us-south.ml.cloud.ibm.com/ml/v1/text/chat?version=2023-05-29",
|
|
|
|
params=dict(
|
|
|
|
model_id=model,
|
|
|
|
project_id=project_id,
|
|
|
|
parameters=dict(
|
|
|
|
max_new_tokens=400,
|
|
|
|
),
|
|
|
|
),
|
|
|
|
headers={
|
|
|
|
"Authorization": "Bearer " + _get_iam_access_token(api_key=api_key),
|
|
|
|
},
|
|
|
|
prompt=prompt,
|
|
|
|
timeout=60,
|
|
|
|
response_format=ResponseFormat.MARKDOWN,
|
|
|
|
)
|
|
|
|
return options
|
|
|
|
|
|
|
|
|
2025-06-12 05:58:44 -05:00
|
|
|
### Usage and conversion
|
|
|
|
|
|
|
|
|
2025-04-10 10:03:04 -06:00
|
|
|
def main():
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
|
|
|
2025-06-19 04:10:40 -05:00
|
|
|
data_folder = Path(__file__).parent / "../../tests/data"
|
|
|
|
input_doc_path = data_folder / "pdf/2305.03393v1-pg9.pdf"
|
2025-04-10 10:03:04 -06:00
|
|
|
|
|
|
|
pipeline_options = VlmPipelineOptions(
|
|
|
|
enable_remote_services=True # <-- this is required!
|
|
|
|
)
|
|
|
|
|
|
|
|
# The ApiVlmOptions() allows to interface with APIs supporting
|
|
|
|
# the multi-modal chat interface. Here follow a few example on how to configure those.
|
|
|
|
|
2025-06-12 05:58:44 -05:00
|
|
|
# One possibility is self-hosting model, e.g. via LM Studio, Ollama or others.
|
|
|
|
|
|
|
|
# Example using the SmolDocling model with LM Studio:
|
|
|
|
# (uncomment the following lines)
|
|
|
|
pipeline_options.vlm_options = lms_vlm_options(
|
|
|
|
model="smoldocling-256m-preview-mlx-docling-snap",
|
|
|
|
prompt="Convert this page to docling.",
|
|
|
|
format=ResponseFormat.DOCTAGS,
|
2025-04-10 10:03:04 -06:00
|
|
|
)
|
|
|
|
|
2025-06-12 05:58:44 -05:00
|
|
|
# Example using the Granite Vision model with LM Studio:
|
|
|
|
# (uncomment the following lines)
|
|
|
|
# pipeline_options.vlm_options = lms_vlm_options(
|
|
|
|
# model="granite-vision-3.2-2b",
|
|
|
|
# prompt="OCR the full page to markdown.",
|
|
|
|
# format=ResponseFormat.MARKDOWN,
|
|
|
|
# )
|
|
|
|
|
|
|
|
# Example using the Granite Vision model with Ollama:
|
|
|
|
# (uncomment the following lines)
|
|
|
|
# pipeline_options.vlm_options = ollama_vlm_options(
|
|
|
|
# model="granite3.2-vision:2b",
|
|
|
|
# prompt="OCR the full page to markdown.",
|
|
|
|
# )
|
|
|
|
|
2025-04-10 10:03:04 -06:00
|
|
|
# Another possibility is using online services, e.g. watsonx.ai.
|
|
|
|
# Using requires setting the env variables WX_API_KEY and WX_PROJECT_ID.
|
2025-06-12 05:58:44 -05:00
|
|
|
# (uncomment the following lines)
|
2025-04-10 10:03:04 -06:00
|
|
|
# pipeline_options.vlm_options = watsonx_vlm_options(
|
|
|
|
# model="ibm/granite-vision-3-2-2b", prompt="OCR the full page to markdown."
|
|
|
|
# )
|
|
|
|
|
|
|
|
# Create the DocumentConverter and launch the conversion.
|
|
|
|
doc_converter = DocumentConverter(
|
|
|
|
format_options={
|
|
|
|
InputFormat.PDF: PdfFormatOption(
|
|
|
|
pipeline_options=pipeline_options,
|
|
|
|
pipeline_cls=VlmPipeline,
|
|
|
|
)
|
|
|
|
}
|
|
|
|
)
|
|
|
|
result = doc_converter.convert(input_doc_path)
|
|
|
|
print(result.document.export_to_markdown())
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|