docling/docs/examples/vlm_pipeline_api_model.py

111 lines
3.4 KiB
Python
Raw Normal View History

feat: OllamaVlmModel for Granite Vision 3.2 (#1337) * build: Add ollama sdk dependency Branch: OllamaVlmModel Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add option plumbing for OllamaVlmOptions in pipeline_options Branch: OllamaVlmModel Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Full implementation of OllamaVlmModel Branch: OllamaVlmModel Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Connect "granite_vision_ollama" pipeline option to CLI Branch: OllamaVlmModel Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * Revert "build: Add ollama sdk dependency" After consideration, we're going to use the generic OpenAI API instead of the Ollama-specific API to avoid duplicate work. This reverts commit bc6b366468cdd66b52540aac9c7d8b584ab48ad0. Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Move OpenAI API call logic into utils.utils This will allow reuse of this logic in a generic VLM model NOTE: There is a subtle change here in the ordering of the text prompt and the image in the call to the OpenAI API. When run against Ollama, this ordering makes a big difference. If the prompt comes before the image, the result is terse and not usable whereas the prompt coming after the image works as expected and matches the non-OpenAI chat API. Branch: OllamaVlmModel Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Refactor from Ollama SDK to generic OpenAI API Branch: OllamaVlmModel Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Linting, formatting, and bug fixes The one bug fix was in the timeout arg to openai_image_request. Otherwise, this is all style changes to get MyPy and black passing cleanly. Branch: OllamaVlmModel Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * remove model from download enum Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * generalize input args for other API providers Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * rename and refactor Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add example Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * require flag for remote services Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * disable example from CI Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add examples to docs Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
2025-04-10 10:03:04 -06:00
import logging
import os
from pathlib import Path
import requests
from dotenv import load_dotenv
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import (
ApiVlmOptions,
ResponseFormat,
VlmPipelineOptions,
)
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.vlm_pipeline import VlmPipeline
def ollama_vlm_options(model: str, prompt: str):
options = ApiVlmOptions(
url="http://localhost:11434/v1/chat/completions", # the default Ollama endpoint
params=dict(
model=model,
),
prompt=prompt,
timeout=90,
scale=1.0,
response_format=ResponseFormat.MARKDOWN,
)
return options
def watsonx_vlm_options(model: str, prompt: str):
load_dotenv()
api_key = os.environ.get("WX_API_KEY")
project_id = os.environ.get("WX_PROJECT_ID")
def _get_iam_access_token(api_key: str) -> str:
res = requests.post(
url="https://iam.cloud.ibm.com/identity/token",
headers={
"Content-Type": "application/x-www-form-urlencoded",
},
data=f"grant_type=urn:ibm:params:oauth:grant-type:apikey&apikey={api_key}",
)
res.raise_for_status()
api_out = res.json()
print(f"{api_out=}")
return api_out["access_token"]
options = ApiVlmOptions(
url="https://us-south.ml.cloud.ibm.com/ml/v1/text/chat?version=2023-05-29",
params=dict(
model_id=model,
project_id=project_id,
parameters=dict(
max_new_tokens=400,
),
),
headers={
"Authorization": "Bearer " + _get_iam_access_token(api_key=api_key),
},
prompt=prompt,
timeout=60,
response_format=ResponseFormat.MARKDOWN,
)
return options
def main():
logging.basicConfig(level=logging.INFO)
# input_doc_path = Path("./tests/data/pdf/2206.01062.pdf")
input_doc_path = Path("./tests/data/pdf/2305.03393v1-pg9.pdf")
pipeline_options = VlmPipelineOptions(
enable_remote_services=True # <-- this is required!
)
# The ApiVlmOptions() allows to interface with APIs supporting
# the multi-modal chat interface. Here follow a few example on how to configure those.
# One possibility is self-hosting model, e.g. via Ollama.
# Example using the Granite Vision model: (uncomment the following lines)
pipeline_options.vlm_options = ollama_vlm_options(
model="granite3.2-vision:2b",
prompt="OCR the full page to markdown.",
)
# Another possibility is using online services, e.g. watsonx.ai.
# Using requires setting the env variables WX_API_KEY and WX_PROJECT_ID.
# Uncomment the following line for this option:
# pipeline_options.vlm_options = watsonx_vlm_options(
# model="ibm/granite-vision-3-2-2b", prompt="OCR the full page to markdown."
# )
# Create the DocumentConverter and launch the conversion.
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_options=pipeline_options,
pipeline_cls=VlmPipeline,
)
}
)
result = doc_converter.convert(input_doc_path)
print(result.document.export_to_markdown())
if __name__ == "__main__":
main()