In this space, you can explore numerous Docling application recipes & end-to-end workflows!
Here some of our picks to get you started:
- 🔀 conversion examples ranging from [simple conversion to Markdown](./minimal.py) and export of [figures](./export_figures.py) & [tables](./export_tables.py), to [VLM](./minimal_vlm_pipeline.py) and [audio](./minimal_asr_pipeline.py) pipelines
- 💬 various RAG examples, e.g. based on [LangChain](./rag_langchain.ipynb), [LlamaIndex](./rag_llamaindex.ipynb), or [Haystack](./rag_haystack.ipynb), including [visual grounding](./visual_grounding.ipynb), and using different vector stores like [Milvus](./rag_milvus.ipynb), [Weaviate](./rag_weaviate.ipynb), or [Qdrant](./retrieval_qdrant.ipynb)
- examples for ✍️ [serialization](./serialization.ipynb) and ✂️ [chunking](./hybrid_chunking.ipynb), including [user-defined customizations](./advanced_chunking_and_serialization.ipynb)
- 🖼️ [picture annotations](./pictures_description.ipynb) and [enrichments](./enrich_doclingdocument.py)
👈 ... and there is much more: explore all the examples using the navigation menu on the side
<divclass="grid"style="text-align: center">
<divclass="card">
Visual grounding
<hr/>
<imgloading="lazy"alt="RAG with visual grounding"src="../assets/visual_grounding.png"height="150px"/>