mirror of
https://github.com/docling-project/docling.git
synced 2025-06-27 05:20:05 +00:00
161 lines
5.2 KiB
Python
161 lines
5.2 KiB
Python
![]() |
# Compare VLM models
|
||
|
# ==================
|
||
|
#
|
||
|
# This example runs the VLM pipeline with different vision-language models.
|
||
|
# Their runtime as well output quality is compared.
|
||
|
|
||
|
import json
|
||
|
import sys
|
||
|
import time
|
||
|
from pathlib import Path
|
||
|
|
||
|
from docling_core.types.doc import DocItemLabel, ImageRefMode
|
||
|
from docling_core.types.doc.document import DEFAULT_EXPORT_LABELS
|
||
|
from tabulate import tabulate
|
||
|
|
||
|
from docling.datamodel import vlm_model_specs
|
||
|
from docling.datamodel.base_models import InputFormat
|
||
|
from docling.datamodel.pipeline_options import (
|
||
|
VlmPipelineOptions,
|
||
|
)
|
||
|
from docling.datamodel.pipeline_options_vlm_model import InferenceFramework
|
||
|
from docling.document_converter import DocumentConverter, PdfFormatOption
|
||
|
from docling.pipeline.vlm_pipeline import VlmPipeline
|
||
|
|
||
|
|
||
|
def convert(sources: list[Path], converter: DocumentConverter):
|
||
|
model_id = pipeline_options.vlm_options.repo_id.replace("/", "_")
|
||
|
framework = pipeline_options.vlm_options.inference_framework
|
||
|
for source in sources:
|
||
|
print("================================================")
|
||
|
print("Processing...")
|
||
|
print(f"Source: {source}")
|
||
|
print("---")
|
||
|
print(f"Model: {model_id}")
|
||
|
print(f"Framework: {framework}")
|
||
|
print("================================================")
|
||
|
print("")
|
||
|
|
||
|
res = converter.convert(source)
|
||
|
|
||
|
print("")
|
||
|
|
||
|
fname = f"{res.input.file.stem}-{model_id}-{framework}"
|
||
|
|
||
|
inference_time = 0.0
|
||
|
for i, page in enumerate(res.pages):
|
||
|
inference_time += page.predictions.vlm_response.generation_time
|
||
|
print("")
|
||
|
print(
|
||
|
f" ---------- Predicted page {i} in {pipeline_options.vlm_options.response_format} in {page.predictions.vlm_response.generation_time} [sec]:"
|
||
|
)
|
||
|
print(page.predictions.vlm_response.text)
|
||
|
print(" ---------- ")
|
||
|
|
||
|
print("===== Final output of the converted document =======")
|
||
|
|
||
|
with (out_path / f"{fname}.json").open("w") as fp:
|
||
|
fp.write(json.dumps(res.document.export_to_dict()))
|
||
|
|
||
|
res.document.save_as_json(
|
||
|
out_path / f"{fname}.json",
|
||
|
image_mode=ImageRefMode.PLACEHOLDER,
|
||
|
)
|
||
|
print(f" => produced {out_path / fname}.json")
|
||
|
|
||
|
res.document.save_as_markdown(
|
||
|
out_path / f"{fname}.md",
|
||
|
image_mode=ImageRefMode.PLACEHOLDER,
|
||
|
)
|
||
|
print(f" => produced {out_path / fname}.md")
|
||
|
|
||
|
res.document.save_as_html(
|
||
|
out_path / f"{fname}.html",
|
||
|
image_mode=ImageRefMode.EMBEDDED,
|
||
|
labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE],
|
||
|
split_page_view=True,
|
||
|
)
|
||
|
print(f" => produced {out_path / fname}.html")
|
||
|
|
||
|
pg_num = res.document.num_pages()
|
||
|
print("")
|
||
|
print(
|
||
|
f"Total document prediction time: {inference_time:.2f} seconds, pages: {pg_num}"
|
||
|
)
|
||
|
print("====================================================")
|
||
|
|
||
|
return [
|
||
|
source,
|
||
|
model_id,
|
||
|
str(framework),
|
||
|
pg_num,
|
||
|
inference_time,
|
||
|
]
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
sources = [
|
||
|
"tests/data/pdf/2305.03393v1-pg9.pdf",
|
||
|
]
|
||
|
|
||
|
out_path = Path("scratch")
|
||
|
out_path.mkdir(parents=True, exist_ok=True)
|
||
|
|
||
|
## Use VlmPipeline
|
||
|
pipeline_options = VlmPipelineOptions()
|
||
|
pipeline_options.generate_page_images = True
|
||
|
|
||
|
## On GPU systems, enable flash_attention_2 with CUDA:
|
||
|
# pipeline_options.accelerator_options.device = AcceleratorDevice.CUDA
|
||
|
# pipeline_options.accelerator_options.cuda_use_flash_attention2 = True
|
||
|
|
||
|
vlm_models = [
|
||
|
## DocTags / SmolDocling models
|
||
|
vlm_model_specs.SMOLDOCLING_MLX,
|
||
|
vlm_model_specs.SMOLDOCLING_TRANSFORMERS,
|
||
|
## Markdown models (using MLX framework)
|
||
|
vlm_model_specs.QWEN25_VL_3B_MLX,
|
||
|
vlm_model_specs.PIXTRAL_12B_MLX,
|
||
|
vlm_model_specs.GEMMA3_12B_MLX,
|
||
|
## Markdown models (using Transformers framework)
|
||
|
vlm_model_specs.GRANITE_VISION_TRANSFORMERS,
|
||
|
vlm_model_specs.PHI4_TRANSFORMERS,
|
||
|
vlm_model_specs.PIXTRAL_12B_TRANSFORMERS,
|
||
|
]
|
||
|
|
||
|
# Remove MLX models if not on Mac
|
||
|
if sys.platform != "darwin":
|
||
|
vlm_models = [
|
||
|
m for m in vlm_models if m.inference_framework != InferenceFramework.MLX
|
||
|
]
|
||
|
|
||
|
rows = []
|
||
|
for vlm_options in vlm_models:
|
||
|
pipeline_options.vlm_options = vlm_options
|
||
|
|
||
|
## Set up pipeline for PDF or image inputs
|
||
|
converter = DocumentConverter(
|
||
|
format_options={
|
||
|
InputFormat.PDF: PdfFormatOption(
|
||
|
pipeline_cls=VlmPipeline,
|
||
|
pipeline_options=pipeline_options,
|
||
|
),
|
||
|
InputFormat.IMAGE: PdfFormatOption(
|
||
|
pipeline_cls=VlmPipeline,
|
||
|
pipeline_options=pipeline_options,
|
||
|
),
|
||
|
},
|
||
|
)
|
||
|
|
||
|
row = convert(sources=sources, converter=converter)
|
||
|
rows.append(row)
|
||
|
|
||
|
print(
|
||
|
tabulate(
|
||
|
rows, headers=["source", "model_id", "framework", "num_pages", "time"]
|
||
|
)
|
||
|
)
|
||
|
|
||
|
print("see if memory gets released ...")
|
||
|
time.sleep(10)
|