feat: Add granite-docling model (#2272)

* adding granite-docling preview

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* updated the model specs

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* typo

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* use granite-docling and add to the model downloader

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* update docs and README

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* Update final repo_ids for GraniteDocling

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Update final repo_ids for GraniteDocling

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Fix model name in CLI usage example

Signed-off-by: Christoph Auer <60343111+cau-git@users.noreply.github.com>

* Fix VLM model name in README.md

Signed-off-by: Christoph Auer <60343111+cau-git@users.noreply.github.com>

---------

Signed-off-by: Peter Staar <taa@zurich.ibm.com>
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
Signed-off-by: Christoph Auer <60343111+cau-git@users.noreply.github.com>
Co-authored-by: Peter Staar <taa@zurich.ibm.com>
Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
This commit is contained in:
Christoph Auer 2025-09-17 15:15:49 +02:00 committed by GitHub
parent ff351fd40c
commit 17afb664d0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 84 additions and 12 deletions

View File

@ -36,7 +36,7 @@ Docling simplifies document processing, parsing diverse formats — including ad
* 🔒 Local execution capabilities for sensitive data and air-gapped environments
* 🤖 Plug-and-play [integrations][integrations] incl. LangChain, LlamaIndex, Crew AI & Haystack for agentic AI
* 🔍 Extensive OCR support for scanned PDFs and images
* 👓 Support of several Visual Language Models ([SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview))
* 👓 Support of several Visual Language Models ([GraniteDocling](https://huggingface.co/ibm-granite/granite-docling-258M))
* 🎙️ Audio support with Automatic Speech Recognition (ASR) models
* 🔌 Connect to any agent using the [MCP server](https://docling-project.github.io/docling/usage/mcp/)
* 💻 Simple and convenient CLI
@ -88,9 +88,9 @@ Docling has a built-in CLI to run conversions.
docling https://arxiv.org/pdf/2206.01062
```
You can also use 🥚[SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview) and other VLMs via Docling CLI:
You can also use 🥚[GraniteDocling](https://huggingface.co/ibm-granite/granite-docling-258M) and other VLMs via Docling CLI:
```bash
docling --pipeline vlm --vlm-model smoldocling https://arxiv.org/pdf/2206.01062
docling --pipeline vlm --vlm-model granite_docling https://arxiv.org/pdf/2206.01062
```
This will use MLX acceleration on supported Apple Silicon hardware.

View File

@ -64,6 +64,8 @@ from docling.datamodel.vlm_model_specs import (
GOT2_TRANSFORMERS,
GRANITE_VISION_OLLAMA,
GRANITE_VISION_TRANSFORMERS,
GRANITEDOCLING_MLX,
GRANITEDOCLING_TRANSFORMERS,
SMOLDOCLING_MLX,
SMOLDOCLING_TRANSFORMERS,
SMOLDOCLING_VLLM,
@ -334,7 +336,7 @@ def convert( # noqa: C901
vlm_model: Annotated[
VlmModelType,
typer.Option(..., help="Choose the VLM model to use with PDF or image files."),
] = VlmModelType.SMOLDOCLING,
] = VlmModelType.GRANITEDOCLING,
asr_model: Annotated[
AsrModelType,
typer.Option(..., help="Choose the ASR model to use with audio/video files."),
@ -684,6 +686,18 @@ def convert( # noqa: C901
"To run SmolDocling faster, please install mlx-vlm:\n"
"pip install mlx-vlm"
)
elif vlm_model == VlmModelType.GRANITEDOCLING:
pipeline_options.vlm_options = GRANITEDOCLING_TRANSFORMERS
if sys.platform == "darwin":
try:
import mlx_vlm
pipeline_options.vlm_options = GRANITEDOCLING_MLX
except ImportError:
_log.warning(
"To run GraniteDocling faster, please install mlx-vlm:\n"
"pip install mlx-vlm"
)
elif vlm_model == VlmModelType.SMOLDOCLING_VLLM:
pipeline_options.vlm_options = SMOLDOCLING_VLLM

View File

@ -33,6 +33,8 @@ class _AvailableModels(str, Enum):
CODE_FORMULA = "code_formula"
PICTURE_CLASSIFIER = "picture_classifier"
SMOLVLM = "smolvlm"
GRANITEDOCLING = "granitedocling"
GRANITEDOCLING_MLX = "granitedocling_mlx"
SMOLDOCLING = "smoldocling"
SMOLDOCLING_MLX = "smoldocling_mlx"
GRANITE_VISION = "granite_vision"
@ -108,6 +110,8 @@ def download(
with_code_formula=_AvailableModels.CODE_FORMULA in to_download,
with_picture_classifier=_AvailableModels.PICTURE_CLASSIFIER in to_download,
with_smolvlm=_AvailableModels.SMOLVLM in to_download,
with_granitedocling=_AvailableModels.GRANITEDOCLING in to_download,
with_granitedocling_mlx=_AvailableModels.GRANITEDOCLING_MLX in to_download,
with_smoldocling=_AvailableModels.SMOLDOCLING in to_download,
with_smoldocling_mlx=_AvailableModels.SMOLDOCLING_MLX in to_download,
with_granite_vision=_AvailableModels.GRANITE_VISION in to_download,

View File

@ -12,7 +12,7 @@ from pydantic import (
)
from typing_extensions import deprecated
from docling.datamodel import asr_model_specs
from docling.datamodel import asr_model_specs, vlm_model_specs
# Import the following for backwards compatibility
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
@ -290,7 +290,7 @@ class VlmPipelineOptions(PaginatedPipelineOptions):
)
# If True, text from backend will be used instead of generated text
vlm_options: Union[InlineVlmOptions, ApiVlmOptions] = (
smoldocling_vlm_conversion_options
vlm_model_specs.GRANITEDOCLING_TRANSFORMERS
)

View File

@ -18,6 +18,35 @@ from docling.datamodel.pipeline_options_vlm_model import (
_log = logging.getLogger(__name__)
# Granite-Docling
GRANITEDOCLING_TRANSFORMERS = InlineVlmOptions(
repo_id="ibm-granite/granite-docling-258M",
prompt="Convert this page to docling.",
response_format=ResponseFormat.DOCTAGS,
inference_framework=InferenceFramework.TRANSFORMERS,
transformers_model_type=TransformersModelType.AUTOMODEL_IMAGETEXTTOTEXT,
supported_devices=[
AcceleratorDevice.CPU,
AcceleratorDevice.CUDA,
],
scale=2.0,
temperature=0.0,
max_new_tokens=8192,
stop_strings=["</doctag>", "<|end_of_text|>"],
)
GRANITEDOCLING_MLX = InlineVlmOptions(
repo_id="ibm-granite/granite-docling-258M-mlx",
prompt="Convert this page to docling.",
response_format=ResponseFormat.DOCTAGS,
inference_framework=InferenceFramework.MLX,
supported_devices=[AcceleratorDevice.MPS],
scale=2.0,
temperature=0.0,
max_new_tokens=8192,
stop_strings=["</doctag>", "<|end_of_text|>"],
)
# SmolDocling
SMOLDOCLING_MLX = InlineVlmOptions(
repo_id="ds4sd/SmolDocling-256M-preview-mlx-bf16",
@ -272,3 +301,4 @@ class VlmModelType(str, Enum):
GRANITE_VISION_VLLM = "granite_vision_vllm"
GRANITE_VISION_OLLAMA = "granite_vision_ollama"
GOT_OCR_2 = "got_ocr_2"
GRANITEDOCLING = "granite_docling"

View File

@ -10,6 +10,8 @@ from docling.datamodel.pipeline_options import (
)
from docling.datamodel.settings import settings
from docling.datamodel.vlm_model_specs import (
GRANITEDOCLING_MLX,
GRANITEDOCLING_TRANSFORMERS,
SMOLDOCLING_MLX,
SMOLDOCLING_TRANSFORMERS,
)
@ -34,6 +36,8 @@ def download_models(
with_code_formula: bool = True,
with_picture_classifier: bool = True,
with_smolvlm: bool = False,
with_granitedocling: bool = False,
with_granitedocling_mlx: bool = False,
with_smoldocling: bool = False,
with_smoldocling_mlx: bool = False,
with_granite_vision: bool = False,
@ -86,6 +90,24 @@ def download_models(
progress=progress,
)
if with_granitedocling:
_log.info("Downloading GraniteDocling model...")
download_hf_model(
repo_id=GRANITEDOCLING_TRANSFORMERS.repo_id,
local_dir=output_dir / GRANITEDOCLING_TRANSFORMERS.repo_cache_folder,
force=force,
progress=progress,
)
if with_granitedocling_mlx:
_log.info("Downloading GraniteDocling MLX model...")
download_hf_model(
repo_id=GRANITEDOCLING_MLX.repo_id,
local_dir=output_dir / GRANITEDOCLING_MLX.repo_cache_folder,
force=force,
progress=progress,
)
if with_smoldocling:
_log.info("Downloading SmolDocling model...")
download_hf_model(

View File

@ -32,7 +32,7 @@ from docling.pipeline.vlm_pipeline import VlmPipeline
source = "https://arxiv.org/pdf/2501.17887"
###### USING SIMPLE DEFAULT VALUES
# - SmolDocling model
# - GraniteDocling model
# - Using the transformers framework
converter = DocumentConverter(
@ -53,7 +53,7 @@ print(doc.export_to_markdown())
# For more options see the `compare_vlm_models.py` example.
pipeline_options = VlmPipelineOptions(
vlm_options=vlm_model_specs.SMOLDOCLING_MLX,
vlm_options=vlm_model_specs.GRANITEDOCLING_MLX,
)
converter = DocumentConverter(

2
docs/index.md vendored
View File

@ -28,7 +28,7 @@ Docling simplifies document processing, parsing diverse formats — including ad
* 🔒 Local execution capabilities for sensitive data and air-gapped environments
* 🤖 Plug-and-play [integrations][integrations] incl. LangChain, LlamaIndex, Crew AI & Haystack for agentic AI
* 🔍 Extensive OCR support for scanned PDFs and images
* 👓 Support of several Visual Language Models ([SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview))
* 👓 Support of several Visual Language Models ([GraniteDocling](https://huggingface.co/ibm-granite/granite-docling-258M))
* 🎙️ Support for Audio with Automatic Speech Recognition (ASR) models
* 🔌 Connect to any agent using the [Docling MCP](https://docling-project.github.io/docling/usage/mcp/) server
* 💻 Simple and convenient CLI

4
docs/usage/index.md vendored
View File

@ -31,9 +31,9 @@ You can additionally use Docling directly from your terminal, for instance:
docling https://arxiv.org/pdf/2206.01062
```
The CLI provides various options, such as 🥚[SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview) (incl. MLX acceleration) & other VLMs:
The CLI provides various options, such as 🥚[GraniteDocling](https://huggingface.co/ibm-granite/granite-docling-258M) (incl. MLX acceleration) & other VLMs:
```bash
docling --pipeline vlm --vlm-model smoldocling https://arxiv.org/pdf/2206.01062
docling --pipeline vlm --vlm-model granite_docling https://arxiv.org/pdf/2206.01062
```
For all available options, run `docling --help` or check the [CLI reference](../reference/cli.md).

View File

@ -45,6 +45,8 @@ The following table reports the models currently available out-of-the-box.
| Model instance | Model | Framework | Device | Num pages | Inference time (sec) |
| ---------------|------ | --------- | ------ | --------- | ---------------------|
| `vlm_model_specs.GRANITEDOCLING_TRANSFORMERS` | [ibm-granite/granite-docling-258M](https://huggingface.co/ibm-granite/granite-docling-258M) | `Transformers/AutoModelForVision2Seq` | MPS | 1 | - |
| `vlm_model_specs.GRANITEDOCLING_MLX` | [ibm-granite/granite-docling-258M-mlx-bf16](https://huggingface.co/ibm-granite/granite-docling-258M-mlx-bf16) | `MLX`| MPS | 1 | - |
| `vlm_model_specs.SMOLDOCLING_TRANSFORMERS` | [ds4sd/SmolDocling-256M-preview](https://huggingface.co/ds4sd/SmolDocling-256M-preview) | `Transformers/AutoModelForVision2Seq` | MPS | 1 | 102.212 |
| `vlm_model_specs.SMOLDOCLING_MLX` | [ds4sd/SmolDocling-256M-preview-mlx-bf16](https://huggingface.co/ds4sd/SmolDocling-256M-preview-mlx-bf16) | `MLX`| MPS | 1 | 6.15453 |
| `vlm_model_specs.QWEN25_VL_3B_MLX` | [mlx-community/Qwen2.5-VL-3B-Instruct-bf16](https://huggingface.co/mlx-community/Qwen2.5-VL-3B-Instruct-bf16) | `MLX`| MPS | 1 | 23.4951 |

View File

@ -83,7 +83,7 @@ nav:
- "Custom conversion": examples/custom_convert.py
- "Batch conversion": examples/batch_convert.py
- "Multi-format conversion": examples/run_with_formats.py
- "VLM pipeline with SmolDocling": examples/minimal_vlm_pipeline.py
- "VLM pipeline with GraniteDocling": examples/minimal_vlm_pipeline.py
- "VLM pipeline with remote model": examples/vlm_pipeline_api_model.py
- "VLM comparison": examples/compare_vlm_models.py
- "ASR pipeline with Whisper": examples/minimal_asr_pipeline.py