mirror of
https://github.com/docling-project/docling.git
synced 2025-06-27 05:20:05 +00:00
chore: fix or ignore runtime and deprecation warnings (#1660)
* chore: fix or catch deprecation warnings Signed-off-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com> * chore: update poetry lock with latest docling-core Signed-off-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com> --------- Signed-off-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com>
This commit is contained in:
parent
b3e0042813
commit
3942923125
@ -185,13 +185,23 @@ class LayoutModel(BasePageModel):
|
||||
).postprocess()
|
||||
# processed_clusters, processed_cells = clusters, page.cells
|
||||
|
||||
conv_res.confidence.pages[page.page_no].layout_score = float(
|
||||
np.mean([c.confidence for c in processed_clusters])
|
||||
)
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings(
|
||||
"ignore",
|
||||
"Mean of empty slice|invalid value encountered in scalar divide",
|
||||
RuntimeWarning,
|
||||
"numpy",
|
||||
)
|
||||
|
||||
conv_res.confidence.pages[page.page_no].ocr_score = float(
|
||||
np.mean([c.confidence for c in processed_cells if c.from_ocr])
|
||||
)
|
||||
conv_res.confidence.pages[page.page_no].layout_score = float(
|
||||
np.mean([c.confidence for c in processed_clusters])
|
||||
)
|
||||
|
||||
conv_res.confidence.pages[page.page_no].ocr_score = float(
|
||||
np.mean(
|
||||
[c.confidence for c in processed_cells if c.from_ocr]
|
||||
)
|
||||
)
|
||||
|
||||
page.cells = processed_cells
|
||||
page.predictions.layout = LayoutPrediction(
|
||||
|
@ -1,4 +1,5 @@
|
||||
import re
|
||||
import warnings
|
||||
from collections.abc import Iterable
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
@ -7,7 +8,7 @@ import numpy as np
|
||||
from PIL import ImageDraw
|
||||
from pydantic import BaseModel
|
||||
|
||||
from docling.datamodel.base_models import Page, ScoreValue
|
||||
from docling.datamodel.base_models import Page
|
||||
from docling.datamodel.document import ConversionResult
|
||||
from docling.datamodel.settings import settings
|
||||
from docling.models.base_model import BasePageModel
|
||||
@ -76,11 +77,15 @@ class PagePreprocessingModel(BasePageModel):
|
||||
score = self.rate_text_quality(c.text)
|
||||
text_scores.append(score)
|
||||
|
||||
conv_res.confidence.pages[page.page_no].parse_score = float(
|
||||
np.nanquantile(
|
||||
text_scores, q=0.10
|
||||
) # To emphasise problems in the parse_score, we take the 10% percentile score of all text cells.
|
||||
)
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings(
|
||||
"ignore", "Mean of empty slice", RuntimeWarning, "numpy"
|
||||
)
|
||||
conv_res.confidence.pages[page.page_no].parse_score = float(
|
||||
np.nanquantile(
|
||||
text_scores, q=0.10
|
||||
) # To emphasise problems in the parse_score, we take the 10% percentile score of all text cells.
|
||||
)
|
||||
|
||||
# DEBUG code:
|
||||
def draw_text_boxes(image, cells, show: bool = False):
|
||||
|
@ -8,7 +8,7 @@ from docling_core.types.doc import DocItem, ImageRef, PictureItem, TableItem
|
||||
|
||||
from docling.backend.abstract_backend import AbstractDocumentBackend
|
||||
from docling.backend.pdf_backend import PdfDocumentBackend
|
||||
from docling.datamodel.base_models import AssembledUnit, Page, PageConfidenceScores
|
||||
from docling.datamodel.base_models import AssembledUnit, Page
|
||||
from docling.datamodel.document import ConversionResult
|
||||
from docling.datamodel.pipeline_options import PdfPipelineOptions
|
||||
from docling.datamodel.settings import settings
|
||||
@ -55,11 +55,13 @@ class StandardPdfPipeline(PaginatedPipeline):
|
||||
"When defined, it must point to a folder containing all models required by the pipeline."
|
||||
)
|
||||
|
||||
self.keep_images = (
|
||||
self.pipeline_options.generate_page_images
|
||||
or self.pipeline_options.generate_picture_images
|
||||
or self.pipeline_options.generate_table_images
|
||||
)
|
||||
with warnings.catch_warnings(): # deprecated generate_table_images
|
||||
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
||||
self.keep_images = (
|
||||
self.pipeline_options.generate_page_images
|
||||
or self.pipeline_options.generate_picture_images
|
||||
or self.pipeline_options.generate_table_images
|
||||
)
|
||||
|
||||
self.reading_order_model = ReadingOrderModel(options=ReadingOrderOptions())
|
||||
|
||||
@ -210,64 +212,74 @@ class StandardPdfPipeline(PaginatedPipeline):
|
||||
)
|
||||
|
||||
# Generate images of the requested element types
|
||||
if (
|
||||
self.pipeline_options.generate_picture_images
|
||||
or self.pipeline_options.generate_table_images
|
||||
):
|
||||
scale = self.pipeline_options.images_scale
|
||||
for element, _level in conv_res.document.iterate_items():
|
||||
if not isinstance(element, DocItem) or len(element.prov) == 0:
|
||||
continue
|
||||
if (
|
||||
isinstance(element, PictureItem)
|
||||
and self.pipeline_options.generate_picture_images
|
||||
) or (
|
||||
isinstance(element, TableItem)
|
||||
and self.pipeline_options.generate_table_images
|
||||
):
|
||||
page_ix = element.prov[0].page_no - 1
|
||||
page = next(
|
||||
(p for p in conv_res.pages if p.page_no == page_ix),
|
||||
cast("Page", None),
|
||||
)
|
||||
assert page is not None
|
||||
assert page.size is not None
|
||||
assert page.image is not None
|
||||
with warnings.catch_warnings(): # deprecated generate_table_images
|
||||
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
||||
if (
|
||||
self.pipeline_options.generate_picture_images
|
||||
or self.pipeline_options.generate_table_images
|
||||
):
|
||||
scale = self.pipeline_options.images_scale
|
||||
for element, _level in conv_res.document.iterate_items():
|
||||
if not isinstance(element, DocItem) or len(element.prov) == 0:
|
||||
continue
|
||||
if (
|
||||
isinstance(element, PictureItem)
|
||||
and self.pipeline_options.generate_picture_images
|
||||
) or (
|
||||
isinstance(element, TableItem)
|
||||
and self.pipeline_options.generate_table_images
|
||||
):
|
||||
page_ix = element.prov[0].page_no - 1
|
||||
page = next(
|
||||
(p for p in conv_res.pages if p.page_no == page_ix),
|
||||
cast("Page", None),
|
||||
)
|
||||
assert page is not None
|
||||
assert page.size is not None
|
||||
assert page.image is not None
|
||||
|
||||
crop_bbox = (
|
||||
element.prov[0]
|
||||
.bbox.scaled(scale=scale)
|
||||
.to_top_left_origin(page_height=page.size.height * scale)
|
||||
)
|
||||
crop_bbox = (
|
||||
element.prov[0]
|
||||
.bbox.scaled(scale=scale)
|
||||
.to_top_left_origin(
|
||||
page_height=page.size.height * scale
|
||||
)
|
||||
)
|
||||
|
||||
cropped_im = page.image.crop(crop_bbox.as_tuple())
|
||||
element.image = ImageRef.from_pil(
|
||||
cropped_im, dpi=int(72 * scale)
|
||||
)
|
||||
cropped_im = page.image.crop(crop_bbox.as_tuple())
|
||||
element.image = ImageRef.from_pil(
|
||||
cropped_im, dpi=int(72 * scale)
|
||||
)
|
||||
|
||||
# Aggregate confidence values for document:
|
||||
if len(conv_res.pages) > 0:
|
||||
conv_res.confidence.layout_score = float(
|
||||
np.nanmean(
|
||||
[c.layout_score for c in conv_res.confidence.pages.values()]
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings(
|
||||
"ignore",
|
||||
category=RuntimeWarning,
|
||||
message="Mean of empty slice|All-NaN slice encountered",
|
||||
)
|
||||
)
|
||||
conv_res.confidence.parse_score = float(
|
||||
np.nanquantile(
|
||||
[c.parse_score for c in conv_res.confidence.pages.values()],
|
||||
q=0.1, # parse score should relate to worst 10% of pages.
|
||||
conv_res.confidence.layout_score = float(
|
||||
np.nanmean(
|
||||
[c.layout_score for c in conv_res.confidence.pages.values()]
|
||||
)
|
||||
)
|
||||
)
|
||||
conv_res.confidence.table_score = float(
|
||||
np.nanmean(
|
||||
[c.table_score for c in conv_res.confidence.pages.values()]
|
||||
conv_res.confidence.parse_score = float(
|
||||
np.nanquantile(
|
||||
[c.parse_score for c in conv_res.confidence.pages.values()],
|
||||
q=0.1, # parse score should relate to worst 10% of pages.
|
||||
)
|
||||
)
|
||||
)
|
||||
conv_res.confidence.ocr_score = float(
|
||||
np.nanmean(
|
||||
[c.ocr_score for c in conv_res.confidence.pages.values()]
|
||||
conv_res.confidence.table_score = float(
|
||||
np.nanmean(
|
||||
[c.table_score for c in conv_res.confidence.pages.values()]
|
||||
)
|
||||
)
|
||||
conv_res.confidence.ocr_score = float(
|
||||
np.nanmean(
|
||||
[c.ocr_score for c in conv_res.confidence.pages.values()]
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
return conv_res
|
||||
|
||||
|
9
poetry.lock
generated
9
poetry.lock
generated
@ -1018,15 +1018,15 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "docling-core"
|
||||
version = "2.31.2"
|
||||
version = "2.32.0"
|
||||
description = "A python library to define and validate data types in Docling."
|
||||
optional = false
|
||||
python-versions = "<4.0,>=3.9"
|
||||
groups = ["main"]
|
||||
markers = "platform_system == \"Linux\" and sys_platform == \"darwin\" and (platform_machine == \"aarch64\" or platform_machine == \"x86_64\") or platform_machine == \"aarch64\" and platform_system == \"Linux\" or platform_machine == \"x86_64\" and sys_platform == \"darwin\""
|
||||
files = [
|
||||
{file = "docling_core-2.31.2-py3-none-any.whl", hash = "sha256:a6db62ac49febcc9e3e24a9acf58e88342ad7f76ab03217b6a3365509eb12eda"},
|
||||
{file = "docling_core-2.31.2.tar.gz", hash = "sha256:6d61863ce492affc45aa522c291631db0be7c50dc146cb93c42af7ff00bd22a2"},
|
||||
{file = "docling_core-2.32.0-py3-none-any.whl", hash = "sha256:6c643b45a18c5ed8cecf12d1eeeb7ff677dcfdb24fa4aa88122e3c9cc2aeb58d"},
|
||||
{file = "docling_core-2.32.0.tar.gz", hash = "sha256:3ec21461f309540bd8bf4880f6c2f0144f6895988102a4204ca5549c76a945c8"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@ -2640,11 +2640,8 @@ files = [
|
||||
{file = "lxml-5.4.0-cp36-cp36m-win_amd64.whl", hash = "sha256:7ce1a171ec325192c6a636b64c94418e71a1964f56d002cc28122fceff0b6121"},
|
||||
{file = "lxml-5.4.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:795f61bcaf8770e1b37eec24edf9771b307df3af74d1d6f27d812e15a9ff3872"},
|
||||
{file = "lxml-5.4.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:29f451a4b614a7b5b6c2e043d7b64a15bd8304d7e767055e8ab68387a8cacf4e"},
|
||||
{file = "lxml-5.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:891f7f991a68d20c75cb13c5c9142b2a3f9eb161f1f12a9489c82172d1f133c0"},
|
||||
{file = "lxml-5.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4aa412a82e460571fad592d0f93ce9935a20090029ba08eca05c614f99b0cc92"},
|
||||
{file = "lxml-5.4.0-cp37-cp37m-manylinux_2_28_aarch64.whl", hash = "sha256:ac7ba71f9561cd7d7b55e1ea5511543c0282e2b6450f122672a2694621d63b7e"},
|
||||
{file = "lxml-5.4.0-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:c5d32f5284012deaccd37da1e2cd42f081feaa76981f0eaa474351b68df813c5"},
|
||||
{file = "lxml-5.4.0-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:ce31158630a6ac85bddd6b830cffd46085ff90498b397bd0a259f59d27a12188"},
|
||||
{file = "lxml-5.4.0-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:31e63621e073e04697c1b2d23fcb89991790eef370ec37ce4d5d469f40924ed6"},
|
||||
{file = "lxml-5.4.0-cp37-cp37m-win32.whl", hash = "sha256:be2ba4c3c5b7900246a8f866580700ef0d538f2ca32535e991027bdaba944063"},
|
||||
{file = "lxml-5.4.0-cp37-cp37m-win_amd64.whl", hash = "sha256:09846782b1ef650b321484ad429217f5154da4d6e786636c38e434fa32e94e49"},
|
||||
|
@ -39,8 +39,15 @@ def test_e2e_valid_csv_conversions():
|
||||
print(f"converting {csv_path}")
|
||||
|
||||
gt_path = csv_path.parent.parent / "groundtruth" / "docling_v2" / csv_path.name
|
||||
|
||||
conv_result: ConversionResult = converter.convert(csv_path)
|
||||
if csv_path.stem in (
|
||||
"csv-too-few-columns",
|
||||
"csv-too-many-columns",
|
||||
"csv-inconsistent-header",
|
||||
):
|
||||
with warns(UserWarning, match="Inconsistent column lengths"):
|
||||
conv_result: ConversionResult = converter.convert(csv_path)
|
||||
else:
|
||||
conv_result: ConversionResult = converter.convert(csv_path)
|
||||
|
||||
doc: DoclingDocument = conv_result.document
|
||||
|
||||
|
@ -38,17 +38,15 @@ def get_converter():
|
||||
|
||||
def test_compare_legacy_output(test_doc_paths):
|
||||
converter = get_converter()
|
||||
|
||||
res = converter.convert_all(test_doc_paths, raises_on_error=True)
|
||||
|
||||
for conv_res in res:
|
||||
print(f"Results for {conv_res.input.file}")
|
||||
print(
|
||||
json.dumps(
|
||||
conv_res.legacy_document.model_dump(
|
||||
mode="json", by_alias=True, exclude_none=True
|
||||
with pytest.warns(DeprecationWarning, match="Use document instead"):
|
||||
print(
|
||||
json.dumps(
|
||||
conv_res.legacy_document.model_dump(
|
||||
mode="json", by_alias=True, exclude_none=True
|
||||
)
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
# assert res.legacy_output == res.legacy_output_transformed
|
||||
|
@ -4,6 +4,7 @@ import warnings
|
||||
from pathlib import Path
|
||||
from typing import List, Optional
|
||||
|
||||
import pytest
|
||||
from docling_core.types.doc import (
|
||||
DocItem,
|
||||
DoclingDocument,
|
||||
@ -302,9 +303,8 @@ def verify_conversion_result_v1(
|
||||
)
|
||||
|
||||
doc_pred_pages: List[Page] = doc_result.pages
|
||||
doc_pred: DsDocument = doc_result.legacy_document
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", DeprecationWarning)
|
||||
with pytest.warns(DeprecationWarning, match="Use document instead"):
|
||||
doc_pred: DsDocument = doc_result.legacy_document
|
||||
doc_pred_md = doc_result.legacy_document.export_to_markdown()
|
||||
doc_pred_dt = doc_result.legacy_document.export_to_document_tokens()
|
||||
|
||||
@ -391,7 +391,7 @@ def verify_conversion_result_v2(
|
||||
doc_pred_pages: List[Page] = doc_result.pages
|
||||
doc_pred: DoclingDocument = doc_result.document
|
||||
doc_pred_md = doc_result.document.export_to_markdown()
|
||||
doc_pred_dt = doc_result.document.export_to_document_tokens()
|
||||
doc_pred_dt = doc_result.document.export_to_doctags()
|
||||
|
||||
engine_suffix = "" if ocr_engine is None else f".{ocr_engine}"
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user