## Conversion ### Convert a single document To convert invidual PDF documents, use `convert()`, for example: ```python from docling.document_converter import DocumentConverter source = "https://arxiv.org/pdf/2408.09869" # PDF path or URL converter = DocumentConverter() result = converter.convert(source) print(result.document.export_to_markdown()) # output: "### Docling Technical Report[...]" ``` ### CLI You can also use Docling directly from your command line to convert individual files —be it local or by URL— or whole directories. A simple example would look like this: ```console docling https://arxiv.org/pdf/2206.01062 ``` To see all available options (export formats etc.) run `docling --help`.
CLI reference Here are the available options as of this writing (for an up-to-date listing, run `docling --help`): ```console $ docling --help Usage: docling [OPTIONS] source ╭─ Arguments ───────────────────────────────────────────────────────────────────────────────────────────────────────────────╮ │ * input_sources source PDF files to convert. Can be local file / directory paths or URL. [default: None] │ │ [required] │ ╰───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯ ╭─ Options ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮ │ --from [docx|pptx|html|image|pdf] Specify input formats to convert from. │ │ Defaults to all formats. │ │ [default: None] │ │ --to [md|json|text|doctags] Specify output formats. Defaults to │ │ Markdown. │ │ [default: None] │ │ --ocr --no-ocr If enabled, the bitmap content will be │ │ processed using OCR. │ │ [default: ocr] │ │ --ocr-engine [easyocr|tesseract_cli|tesseract] The OCR engine to use. [default: easyocr] │ │ --abort-on-error --no-abort-on-error If enabled, the bitmap content will be │ │ processed using OCR. │ │ [default: no-abort-on-error] │ │ --output PATH Output directory where results are saved. │ │ [default: .] │ │ --version Show version information. │ │ --help Show this message and exit. │ ╰───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯ ```
### Advanced options #### Adjust pipeline features The example file [custom_convert.py](./examples/custom_convert.py) contains multiple ways one can adjust the conversion pipeline and features. ##### Control PDF table extraction options You can control if table structure recognition should map the recognized structure back to PDF cells (default) or use text cells from the structure prediction itself. This can improve output quality if you find that multiple columns in extracted tables are erroneously merged into one. ```python from docling.datamodel.base_models import InputFormat from docling.document_converter import DocumentConverter, PdfFormatOption from docling.datamodel.pipeline_options import PdfPipelineOptions pipeline_options = PdfPipelineOptions(do_table_structure=True) pipeline_options.table_structure_options.do_cell_matching = False # uses text cells predicted from table structure model doc_converter = DocumentConverter( format_options={ InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options) } ) ``` Since docling 1.16.0: You can control which TableFormer mode you want to use. Choose between `TableFormerMode.FAST` (default) and `TableFormerMode.ACCURATE` (better, but slower) to receive better quality with difficult table structures. ```python from docling.datamodel.base_models import InputFormat from docling.document_converter import DocumentConverter, PdfFormatOption from docling.datamodel.pipeline_options import PdfPipelineOptions, TableFormerMode pipeline_options = PdfPipelineOptions(do_table_structure=True) pipeline_options.table_structure_options.mode = TableFormerMode.ACCURATE # use more accurate TableFormer model doc_converter = DocumentConverter( format_options={ InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options) } ) ``` #### Impose limits on the document size You can limit the file size and number of pages which should be allowed to process per document: ```python from pathlib import Path from docling.document_converter import DocumentConverter source = "https://arxiv.org/pdf/2408.09869" converter = DocumentConverter() result = converter.convert(source, max_num_pages=100, max_file_size=20971520) ``` #### Convert from binary PDF streams You can convert PDFs from a binary stream instead of from the filesystem as follows: ```python from io import BytesIO from docling.datamodel.base_models import DocumentStream from docling.document_converter import DocumentConverter buf = BytesIO(your_binary_stream) source = DocumentStream(filename="my_doc.pdf", stream=buf) converter = DocumentConverter() result = converter.convert(source) ``` #### Limit resource usage You can limit the CPU threads used by Docling by setting the environment variable `OMP_NUM_THREADS` accordingly. The default setting is using 4 CPU threads. ## Chunking You can perform a hierarchy-aware chunking of a Docling document as follows: ```python from docling.document_converter import DocumentConverter from docling_core.transforms.chunker import HierarchicalChunker conv_res = DocumentConverter().convert("https://arxiv.org/pdf/2206.01062") doc = conv_res.document chunks = list(HierarchicalChunker().chunk(doc)) print(chunks[30]) # { # "text": "Lately, new types of ML models for document-layout analysis have emerged [...]", # "meta": { # "doc_items": [{ # "self_ref": "#/texts/40", # "label": "text", # "prov": [{ # "page_no": 2, # "bbox": {"l": 317.06, "t": 325.81, "r": 559.18, "b": 239.97, ...}, # }] # }], # "headings": ["2 RELATED WORK"], # } # } ```