from pathlib import Path from docling_core.types.doc import PictureClassificationData from docling.datamodel.base_models import InputFormat from docling.datamodel.document import ConversionResult from docling.datamodel.pipeline_options import PdfPipelineOptions from docling.document_converter import DocumentConverter, PdfFormatOption from docling.pipeline.standard_pdf_pipeline import StandardPdfPipeline def get_converter(): pipeline_options = PdfPipelineOptions() pipeline_options.generate_page_images = True pipeline_options.do_ocr = False pipeline_options.do_table_structure = False pipeline_options.do_code_enrichment = False pipeline_options.do_formula_enrichment = False pipeline_options.do_picture_classification = True pipeline_options.generate_picture_images = True pipeline_options.images_scale = 2 converter = DocumentConverter( format_options={ InputFormat.PDF: PdfFormatOption( pipeline_cls=StandardPdfPipeline, pipeline_options=pipeline_options, ) } ) return converter def test_picture_classifier(): pdf_path = Path("tests/data/pdf/picture_classification.pdf") converter = get_converter() print(f"converting {pdf_path}") doc_result: ConversionResult = converter.convert(pdf_path) results = doc_result.document.pictures assert len(results) == 2 res = results[0] assert len(res.annotations) == 1 assert isinstance(res.annotations[0], PictureClassificationData) classification_data = res.annotations[0] assert classification_data.provenance == "DocumentPictureClassifier" assert len(classification_data.predicted_classes) == 16, ( "Number of predicted classes is not equal to 16" ) confidences = [pred.confidence for pred in classification_data.predicted_classes] assert confidences == sorted(confidences, reverse=True), ( "Predictions are not sorted in descending order of confidence" ) assert classification_data.predicted_classes[0].class_name == "bar_chart", ( "The prediction is wrong for the bar chart image." ) res = results[1] assert len(res.annotations) == 1 assert isinstance(res.annotations[0], PictureClassificationData) classification_data = res.annotations[0] assert classification_data.provenance == "DocumentPictureClassifier" assert len(classification_data.predicted_classes) == 16, ( "Number of predicted classes is not equal to 16" ) confidences = [pred.confidence for pred in classification_data.predicted_classes] assert confidences == sorted(confidences, reverse=True), ( "Predictions are not sorted in descending order of confidence" ) assert classification_data.predicted_classes[0].class_name == "map", ( "The prediction is wrong for the bar chart image." )