## Conversion ### Convert a single document To convert individual PDF documents, use `convert()`, for example: ```python from docling.document_converter import DocumentConverter source = "https://arxiv.org/pdf/2408.09869" # PDF path or URL converter = DocumentConverter() result = converter.convert(source) print(result.document.export_to_markdown()) # output: "### Docling Technical Report[...]" ``` ### CLI You can also use Docling directly from your command line to convert individual files —be it local or by URL— or whole directories. A simple example would look like this: ```console docling https://arxiv.org/pdf/2206.01062 ``` To see all available options (export formats etc.) run `docling --help`. More details in the [CLI reference page](./reference/cli.md). ### Advanced options #### Adjust pipeline features The example file [custom_convert.py](./examples/custom_convert.py) contains multiple ways one can adjust the conversion pipeline and features. ##### Control PDF table extraction options You can control if table structure recognition should map the recognized structure back to PDF cells (default) or use text cells from the structure prediction itself. This can improve output quality if you find that multiple columns in extracted tables are erroneously merged into one. ```python from docling.datamodel.base_models import InputFormat from docling.document_converter import DocumentConverter, PdfFormatOption from docling.datamodel.pipeline_options import PdfPipelineOptions pipeline_options = PdfPipelineOptions(do_table_structure=True) pipeline_options.table_structure_options.do_cell_matching = False # uses text cells predicted from table structure model doc_converter = DocumentConverter( format_options={ InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options) } ) ``` Since docling 1.16.0: You can control which TableFormer mode you want to use. Choose between `TableFormerMode.FAST` (default) and `TableFormerMode.ACCURATE` (better, but slower) to receive better quality with difficult table structures. ```python from docling.datamodel.base_models import InputFormat from docling.document_converter import DocumentConverter, PdfFormatOption from docling.datamodel.pipeline_options import PdfPipelineOptions, TableFormerMode pipeline_options = PdfPipelineOptions(do_table_structure=True) pipeline_options.table_structure_options.mode = TableFormerMode.ACCURATE # use more accurate TableFormer model doc_converter = DocumentConverter( format_options={ InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options) } ) ``` ##### Provide specific artifacts path By default, artifacts such as models are downloaded automatically upon first usage. If you would prefer to use a local path where the artifacts have been explicitly prefetched, you can do that as follows: ```python from docling.datamodel.base_models import InputFormat from docling.datamodel.pipeline_options import PdfPipelineOptions from docling.document_converter import DocumentConverter, PdfFormatOption from docling.pipeline.standard_pdf_pipeline import StandardPdfPipeline # # to explicitly prefetch: # artifacts_path = StandardPdfPipeline.download_models_hf() artifacts_path = "/local/path/to/artifacts" pipeline_options = PdfPipelineOptions(artifacts_path=artifacts_path) doc_converter = DocumentConverter( format_options={ InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options) } ) ``` #### Impose limits on the document size You can limit the file size and number of pages which should be allowed to process per document: ```python from pathlib import Path from docling.document_converter import DocumentConverter source = "https://arxiv.org/pdf/2408.09869" converter = DocumentConverter() result = converter.convert(source, max_num_pages=100, max_file_size=20971520) ``` #### Convert from binary PDF streams You can convert PDFs from a binary stream instead of from the filesystem as follows: ```python from io import BytesIO from docling.datamodel.base_models import DocumentStream from docling.document_converter import DocumentConverter buf = BytesIO(your_binary_stream) source = DocumentStream(name="my_doc.pdf", stream=buf) converter = DocumentConverter() result = converter.convert(source) ``` #### Limit resource usage You can limit the CPU threads used by Docling by setting the environment variable `OMP_NUM_THREADS` accordingly. The default setting is using 4 CPU threads. #### Use specific backend converters !!! note This section discusses directly invoking a [backend](./concepts/architecture.md), i.e. using a low-level API. This should only be done when necessary. For most cases, using a `DocumentConverter` (high-level API) as discussed in the sections above should suffice — and is the recommended way. By default, Docling will try to identify the document format to apply the appropriate conversion backend (see the list of [supported formats](./supported_formats.md)). You can restrict the `DocumentConverter` to a set of allowed document formats, as shown in the [Multi-format conversion](./examples/run_with_formats.py) example. Alternatively, you can also use the specific backend that matches your document content. For instance, you can use `HTMLDocumentBackend` for HTML pages: ```python import urllib.request from io import BytesIO from docling.backend.html_backend import HTMLDocumentBackend from docling.datamodel.base_models import InputFormat from docling.datamodel.document import InputDocument url = "https://en.wikipedia.org/wiki/Duck" text = urllib.request.urlopen(url).read() in_doc = InputDocument( path_or_stream=BytesIO(text), format=InputFormat.HTML, backend=HTMLDocumentBackend, filename="duck.html", ) backend = HTMLDocumentBackend(in_doc=in_doc, path_or_stream=BytesIO(text)) dl_doc = backend.convert() print(dl_doc.export_to_markdown()) ``` ## Chunking You can chunk a Docling document using a [chunker](concepts/chunking.md), such as a `HybridChunker`, as shown below (for more details check out [this example](examples/hybrid_chunking.ipynb)): ```python from docling.document_converter import DocumentConverter from docling.chunking import HybridChunker conv_res = DocumentConverter().convert("https://arxiv.org/pdf/2206.01062") doc = conv_res.document chunker = HybridChunker(tokenizer="BAAI/bge-small-en-v1.5") # set tokenizer as needed chunk_iter = chunker.chunk(doc) ``` An example chunk would look like this: ```python print(list(chunk_iter)[11]) # { # "text": "In this paper, we present the DocLayNet dataset. [...]", # "meta": { # "doc_items": [{ # "self_ref": "#/texts/28", # "label": "text", # "prov": [{ # "page_no": 2, # "bbox": {"l": 53.29, "t": 287.14, "r": 295.56, "b": 212.37, ...}, # }], ..., # }, ...], # "headings": ["1 INTRODUCTION"], # } # } ```