## Conversion ### Convert a single document To convert individual PDF documents, use `convert()`, for example: ```python from docling.document_converter import DocumentConverter source = "https://arxiv.org/pdf/2408.09869" # PDF path or URL converter = DocumentConverter() result = converter.convert(source) print(result.document.export_to_markdown()) # output: "### Docling Technical Report[...]" ``` ### CLI You can also use Docling directly from your command line to convert individual files —be it local or by URL— or whole directories. ```console docling https://arxiv.org/pdf/2206.01062 ``` You can also use 🥚[SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview) and other VLMs via Docling CLI: ```bash docling --pipeline vlm --vlm-model smoldocling https://arxiv.org/pdf/2206.01062 ``` This will use MLX acceleration on supported Apple Silicon hardware. To see all available options (export formats etc.) run `docling --help`. More details in the [CLI reference page](../reference/cli.md). ### Advanced options #### Model prefetching and offline usage By default, models are downloaded automatically upon first usage. If you would prefer to explicitly prefetch them for offline use (e.g. in air-gapped environments) you can do that as follows: **Step 1: Prefetch the models** Use the `docling-tools models download` utility: ```sh $ docling-tools models download Downloading layout model... Downloading tableformer model... Downloading picture classifier model... Downloading code formula model... Downloading easyocr models... Models downloaded into $HOME/.cache/docling/models. ``` Alternatively, models can be programmatically downloaded using `docling.utils.model_downloader.download_models()`. **Step 2: Use the prefetched models** ```python from docling.datamodel.base_models import InputFormat from docling.datamodel.pipeline_options import EasyOcrOptions, PdfPipelineOptions from docling.document_converter import DocumentConverter, PdfFormatOption artifacts_path = "/local/path/to/models" pipeline_options = PdfPipelineOptions(artifacts_path=artifacts_path) doc_converter = DocumentConverter( format_options={ InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options) } ) ``` Or using the CLI: ```sh docling --artifacts-path="/local/path/to/models" FILE ``` Or using the `DOCLING_ARTIFACTS_PATH` environment variable: ```sh export DOCLING_ARTIFACTS_PATH="/local/path/to/models" python my_docling_script.py ``` #### Using remote services The main purpose of Docling is to run local models which are not sharing any user data with remote services. Anyhow, there are valid use cases for processing part of the pipeline using remote services, for example invoking OCR engines from cloud vendors or the usage of hosted LLMs. In Docling we decided to allow such models, but we require the user to explicitly opt-in in communicating with external services. ```py from docling.datamodel.base_models import InputFormat from docling.datamodel.pipeline_options import PdfPipelineOptions from docling.document_converter import DocumentConverter, PdfFormatOption pipeline_options = PdfPipelineOptions(enable_remote_services=True) doc_converter = DocumentConverter( format_options={ InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options) } ) ``` When the value `enable_remote_services=True` is not set, the system will raise an exception `OperationNotAllowed()`. _Note: This option is only related to the system sending user data to remote services. Control of pulling data (e.g. model weights) follows the logic described in [Model prefetching and offline usage](#model-prefetching-and-offline-usage)._ ##### List of remote model services The options in this list require the explicit `enable_remote_services=True` when processing the documents. - `PictureDescriptionApiOptions`: Using vision models via API calls. #### Adjust pipeline features The example file [custom_convert.py](../examples/custom_convert.py) contains multiple ways one can adjust the conversion pipeline and features. ##### Control PDF table extraction options You can control if table structure recognition should map the recognized structure back to PDF cells (default) or use text cells from the structure prediction itself. This can improve output quality if you find that multiple columns in extracted tables are erroneously merged into one. ```python from docling.datamodel.base_models import InputFormat from docling.document_converter import DocumentConverter, PdfFormatOption from docling.datamodel.pipeline_options import PdfPipelineOptions pipeline_options = PdfPipelineOptions(do_table_structure=True) pipeline_options.table_structure_options.do_cell_matching = False # uses text cells predicted from table structure model doc_converter = DocumentConverter( format_options={ InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options) } ) ``` Since docling 1.16.0: You can control which TableFormer mode you want to use. Choose between `TableFormerMode.FAST` (faster but less accurate) and `TableFormerMode.ACCURATE` (default) to receive better quality with difficult table structures. ```python from docling.datamodel.base_models import InputFormat from docling.document_converter import DocumentConverter, PdfFormatOption from docling.datamodel.pipeline_options import PdfPipelineOptions, TableFormerMode pipeline_options = PdfPipelineOptions(do_table_structure=True) pipeline_options.table_structure_options.mode = TableFormerMode.ACCURATE # use more accurate TableFormer model doc_converter = DocumentConverter( format_options={ InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options) } ) ``` #### Impose limits on the document size You can limit the file size and number of pages which should be allowed to process per document: ```python from pathlib import Path from docling.document_converter import DocumentConverter source = "https://arxiv.org/pdf/2408.09869" converter = DocumentConverter() result = converter.convert(source, max_num_pages=100, max_file_size=20971520) ``` #### Convert from binary PDF streams You can convert PDFs from a binary stream instead of from the filesystem as follows: ```python from io import BytesIO from docling.datamodel.base_models import DocumentStream from docling.document_converter import DocumentConverter buf = BytesIO(your_binary_stream) source = DocumentStream(name="my_doc.pdf", stream=buf) converter = DocumentConverter() result = converter.convert(source) ``` #### Limit resource usage You can limit the CPU threads used by Docling by setting the environment variable `OMP_NUM_THREADS` accordingly. The default setting is using 4 CPU threads. #### Use specific backend converters !!! note This section discusses directly invoking a [backend](../concepts/architecture.md), i.e. using a low-level API. This should only be done when necessary. For most cases, using a `DocumentConverter` (high-level API) as discussed in the sections above should suffice — and is the recommended way. By default, Docling will try to identify the document format to apply the appropriate conversion backend (see the list of [supported formats](supported_formats.md)). You can restrict the `DocumentConverter` to a set of allowed document formats, as shown in the [Multi-format conversion](../examples/run_with_formats.py) example. Alternatively, you can also use the specific backend that matches your document content. For instance, you can use `HTMLDocumentBackend` for HTML pages: ```python import urllib.request from io import BytesIO from docling.backend.html_backend import HTMLDocumentBackend from docling.datamodel.base_models import InputFormat from docling.datamodel.document import InputDocument url = "https://en.wikipedia.org/wiki/Duck" text = urllib.request.urlopen(url).read() in_doc = InputDocument( path_or_stream=BytesIO(text), format=InputFormat.HTML, backend=HTMLDocumentBackend, filename="duck.html", ) backend = HTMLDocumentBackend(in_doc=in_doc, path_or_stream=BytesIO(text)) dl_doc = backend.convert() print(dl_doc.export_to_markdown()) ``` ## Chunking You can chunk a Docling document using a [chunker](../concepts/chunking.md), such as a `HybridChunker`, as shown below (for more details check out [this example](../examples/hybrid_chunking.ipynb)): ```python from docling.document_converter import DocumentConverter from docling.chunking import HybridChunker conv_res = DocumentConverter().convert("https://arxiv.org/pdf/2206.01062") doc = conv_res.document chunker = HybridChunker(tokenizer="BAAI/bge-small-en-v1.5") # set tokenizer as needed chunk_iter = chunker.chunk(doc) ``` An example chunk would look like this: ```python print(list(chunk_iter)[11]) # { # "text": "In this paper, we present the DocLayNet dataset. [...]", # "meta": { # "doc_items": [{ # "self_ref": "#/texts/28", # "label": "text", # "prov": [{ # "page_no": 2, # "bbox": {"l": 53.29, "t": 287.14, "r": 295.56, "b": 212.37, ...}, # }], ..., # }, ...], # "headings": ["1 INTRODUCTION"], # } # } ```