import datetime import logging import time from pathlib import Path import pandas as pd from docling.datamodel.base_models import AssembleOptions, ConversionStatus from docling.datamodel.document import DocumentConversionInput from docling.document_converter import DocumentConverter from docling.utils.export import generate_multimodal_pages _log = logging.getLogger(__name__) IMAGE_RESOLUTION_SCALE = 2.0 def main(): logging.basicConfig(level=logging.INFO) input_doc_paths = [ Path("./tests/data/2206.01062.pdf"), ] output_dir = Path("./scratch") input_files = DocumentConversionInput.from_paths(input_doc_paths) # Important: For operating with page images, we must keep them, otherwise the DocumentConverter # will destroy them for cleaning up memory. # This is done by setting AssembleOptions.images_scale, which also defines the scale of images. # scale=1 correspond of a standard 72 DPI image assemble_options = AssembleOptions() assemble_options.images_scale = IMAGE_RESOLUTION_SCALE doc_converter = DocumentConverter(assemble_options=assemble_options) start_time = time.time() converted_docs = doc_converter.convert(input_files) success_count = 0 failure_count = 0 output_dir.mkdir(parents=True, exist_ok=True) for doc in converted_docs: if doc.status != ConversionStatus.SUCCESS: _log.info(f"Document {doc.input.file} failed to convert.") failure_count += 1 continue rows = [] for ( content_text, content_md, page_cells, page_segments, page, ) in generate_multimodal_pages(doc): dpi = page._default_image_scale * 72 rows.append( { "document": doc.input.file.name, "hash": doc.input.document_hash, "page_hash": page.page_hash, "image": { "width": page.image.width, "height": page.image.height, "bytes": page.image.tobytes(), }, "cells": page_cells, "contents": content_text, "contents_md": content_md, "segments": page_segments, "extra": { "page_num": page.page_no + 1, "width_in_points": page.size.width, "height_in_points": page.size.height, "dpi": dpi, }, } ) success_count += 1 # Generate one parquet from all documents df = pd.json_normalize(rows) now = datetime.datetime.now() output_filename = output_dir / f"multimodal_{now:%Y-%m-%d_%H%M%S}.parquet" df.to_parquet(output_filename) end_time = time.time() - start_time _log.info(f"All documents were converted in {end_time:.2f} seconds.") if failure_count > 0: raise RuntimeError( f"The example failed converting {failure_count} on {len(input_doc_paths)}." ) # This block demonstrates how the file can be opened with the HF datasets library # from datasets import Dataset # from PIL import Image # multimodal_df = pd.read_parquet(output_filename) # # Convert pandas DataFrame to Hugging Face Dataset and load bytes into image # dataset = Dataset.from_pandas(multimodal_df) # def transforms(examples): # examples["image"] = Image.frombytes('RGB', (examples["image.width"], examples["image.height"]), examples["image.bytes"], 'raw') # return examples # dataset = dataset.map(transforms) if __name__ == "__main__": main()