import json import time from pathlib import Path from docling_core.types.doc import DocItemLabel, ImageRefMode from docling_core.types.doc.document import DEFAULT_EXPORT_LABELS from docling.datamodel.base_models import InputFormat from docling.datamodel.pipeline_options import ( VlmPipelineOptions, smoldocling_vlm_mlx_conversion_options, ) from docling.document_converter import DocumentConverter, PdfFormatOption from docling.pipeline.vlm_pipeline import VlmPipeline sources = [ # "tests/data/2305.03393v1-pg9-img.png", "tests/data/pdf/2305.03393v1-pg9.pdf", ] ## Use experimental VlmPipeline pipeline_options = VlmPipelineOptions() # If force_backend_text = True, text from backend will be used instead of generated text pipeline_options.force_backend_text = False ## On GPU systems, enable flash_attention_2 with CUDA: # pipeline_options.accelerator_options.device = AcceleratorDevice.CUDA # pipeline_options.accelerator_options.cuda_use_flash_attention2 = True ## Pick a VLM model. We choose SmolDocling-256M by default # pipeline_options.vlm_options = smoldocling_vlm_conversion_options ## Pick a VLM model. Fast Apple Silicon friendly implementation for SmolDocling-256M via MLX pipeline_options.vlm_options = smoldocling_vlm_mlx_conversion_options ## Alternative VLM models: # pipeline_options.vlm_options = granite_vision_vlm_conversion_options ## Set up pipeline for PDF or image inputs converter = DocumentConverter( format_options={ InputFormat.PDF: PdfFormatOption( pipeline_cls=VlmPipeline, pipeline_options=pipeline_options, ), InputFormat.IMAGE: PdfFormatOption( pipeline_cls=VlmPipeline, pipeline_options=pipeline_options, ), } ) out_path = Path("scratch") out_path.mkdir(parents=True, exist_ok=True) for source in sources: start_time = time.time() print("================================================") print(f"Processing... {source}") print("================================================") print("") res = converter.convert(source) print("") print(res.document.export_to_markdown()) for page in res.pages: print("") print("Predicted page in DOCTAGS:") print(page.predictions.vlm_response.text) res.document.save_as_html( filename=Path(f"{out_path}/{res.input.file.stem}.html"), image_mode=ImageRefMode.REFERENCED, labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE], ) with (out_path / f"{res.input.file.stem}.json").open("w") as fp: fp.write(json.dumps(res.document.export_to_dict())) res.document.save_as_json( out_path / f"{res.input.file.stem}.json", image_mode=ImageRefMode.PLACEHOLDER, ) res.document.save_as_markdown( out_path / f"{res.input.file.stem}.md", image_mode=ImageRefMode.PLACEHOLDER, ) pg_num = res.document.num_pages() print("") inference_time = time.time() - start_time print( f"Total document prediction time: {inference_time:.2f} seconds, pages: {pg_num}" ) print("================================================") print("done!") print("================================================")