import logging import os from pathlib import Path import requests from dotenv import load_dotenv from docling.datamodel.base_models import InputFormat from docling.datamodel.pipeline_options import ( VlmPipelineOptions, ) from docling.datamodel.pipeline_options_vlm_model import ApiVlmOptions, ResponseFormat from docling.document_converter import DocumentConverter, PdfFormatOption from docling.pipeline.vlm_pipeline import VlmPipeline def ollama_vlm_options(model: str, prompt: str): options = ApiVlmOptions( url="http://localhost:11434/v1/chat/completions", # the default Ollama endpoint params=dict( model=model, ), prompt=prompt, timeout=90, scale=1.0, response_format=ResponseFormat.MARKDOWN, ) return options def watsonx_vlm_options(model: str, prompt: str): load_dotenv() api_key = os.environ.get("WX_API_KEY") project_id = os.environ.get("WX_PROJECT_ID") def _get_iam_access_token(api_key: str) -> str: res = requests.post( url="https://iam.cloud.ibm.com/identity/token", headers={ "Content-Type": "application/x-www-form-urlencoded", }, data=f"grant_type=urn:ibm:params:oauth:grant-type:apikey&apikey={api_key}", ) res.raise_for_status() api_out = res.json() print(f"{api_out=}") return api_out["access_token"] options = ApiVlmOptions( url="https://us-south.ml.cloud.ibm.com/ml/v1/text/chat?version=2023-05-29", params=dict( model_id=model, project_id=project_id, parameters=dict( max_new_tokens=400, ), ), headers={ "Authorization": "Bearer " + _get_iam_access_token(api_key=api_key), }, prompt=prompt, timeout=60, response_format=ResponseFormat.MARKDOWN, ) return options def main(): logging.basicConfig(level=logging.INFO) # input_doc_path = Path("./tests/data/pdf/2206.01062.pdf") input_doc_path = Path("./tests/data/pdf/2305.03393v1-pg9.pdf") pipeline_options = VlmPipelineOptions( enable_remote_services=True # <-- this is required! ) # The ApiVlmOptions() allows to interface with APIs supporting # the multi-modal chat interface. Here follow a few example on how to configure those. # One possibility is self-hosting model, e.g. via Ollama. # Example using the Granite Vision model: (uncomment the following lines) pipeline_options.vlm_options = ollama_vlm_options( model="granite3.2-vision:2b", prompt="OCR the full page to markdown.", ) # Another possibility is using online services, e.g. watsonx.ai. # Using requires setting the env variables WX_API_KEY and WX_PROJECT_ID. # Uncomment the following line for this option: # pipeline_options.vlm_options = watsonx_vlm_options( # model="ibm/granite-vision-3-2-2b", prompt="OCR the full page to markdown." # ) # Create the DocumentConverter and launch the conversion. doc_converter = DocumentConverter( format_options={ InputFormat.PDF: PdfFormatOption( pipeline_options=pipeline_options, pipeline_cls=VlmPipeline, ) } ) result = doc_converter.convert(input_doc_path) print(result.document.export_to_markdown()) if __name__ == "__main__": main()