docling/tests/verify_utils.py
Panos Vagenas 63bef59d9e
fix: fix legacy doc ref (#162)
Signed-off-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com>
2024-10-18 13:11:20 +02:00

375 lines
13 KiB
Python

import json
import warnings
from pathlib import Path
from typing import List
from docling_core.types.doc import DoclingDocument
from docling_core.types.legacy_doc.document import ExportedCCSDocument as DsDocument
from pydantic import TypeAdapter
from pydantic.json import pydantic_encoder
from docling.datamodel.base_models import ConversionStatus, Page
from docling.datamodel.document import ConversionResult
def levenshtein(str1: str, str2: str) -> int:
# Ensure str1 is the shorter string to optimize memory usage
if len(str1) > len(str2):
str1, str2 = str2, str1
# Previous and current row buffers
previous_row = list(range(len(str2) + 1))
current_row = [0] * (len(str2) + 1)
# Compute the Levenshtein distance row by row
for i, c1 in enumerate(str1, start=1):
current_row[0] = i
for j, c2 in enumerate(str2, start=1):
insertions = previous_row[j] + 1
deletions = current_row[j - 1] + 1
substitutions = previous_row[j - 1] + (c1 != c2)
current_row[j] = min(insertions, deletions, substitutions)
# Swap rows for the next iteration
previous_row, current_row = current_row, previous_row
# The result is in the last element of the previous row
return previous_row[-1]
def verify_text(gt: str, pred: str, fuzzy: bool, fuzzy_threshold: float = 0.4):
if len(gt) == 0 or not fuzzy:
assert gt == pred, f"{gt}!={pred}"
else:
dist = levenshtein(gt, pred)
diff = dist / len(gt)
assert diff < fuzzy_threshold, f"{gt}!~{pred}"
return True
def verify_cells(doc_pred_pages: List[Page], doc_true_pages: List[Page]):
assert len(doc_pred_pages) == len(
doc_true_pages
), "pred- and true-doc do not have the same number of pages"
for pid, page_true_item in enumerate(doc_true_pages):
num_true_cells = len(page_true_item.cells)
num_pred_cells = len(doc_pred_pages[pid].cells)
assert (
num_true_cells == num_pred_cells
), f"num_true_cells!=num_pred_cells {num_true_cells}!={num_pred_cells}"
for cid, cell_true_item in enumerate(page_true_item.cells):
cell_pred_item = doc_pred_pages[pid].cells[cid]
true_text = cell_true_item.text
pred_text = cell_pred_item.text
assert true_text == pred_text, f"{true_text}!={pred_text}"
true_bbox = cell_true_item.bbox.as_tuple()
pred_bbox = cell_pred_item.bbox.as_tuple()
assert (
true_bbox == pred_bbox
), f"bbox is not the same: {true_bbox} != {pred_bbox}"
return True
# def verify_maintext(doc_pred: DsDocument, doc_true: DsDocument):
# assert doc_true.main_text is not None, "doc_true cannot be None"
# assert doc_pred.main_text is not None, "doc_true cannot be None"
#
# assert len(doc_true.main_text) == len(
# doc_pred.main_text
# ), f"document has different length of main-text than expected. {len(doc_true.main_text)}!={len(doc_pred.main_text)}"
#
# for l, true_item in enumerate(doc_true.main_text):
# pred_item = doc_pred.main_text[l]
# # Validate type
# assert (
# true_item.obj_type == pred_item.obj_type
# ), f"Item[{l}] type does not match. expected[{true_item.obj_type}] != predicted [{pred_item.obj_type}]"
#
# # Validate text ceels
# if isinstance(true_item, BaseText):
# assert isinstance(
# pred_item, BaseText
# ), f"{pred_item} is not a BaseText element, but {true_item} is."
# assert true_item.text == pred_item.text
#
# return True
def verify_tables_v1(doc_pred: DsDocument, doc_true: DsDocument, fuzzy: bool):
if doc_true.tables is None:
# No tables to check
assert doc_pred.tables is None, "not expecting any table on this document"
return True
assert doc_pred.tables is not None, "no tables predicted, but expected in doc_true"
# print("Expected number of tables: {}, result: {}".format(len(doc_true.tables), len(doc_pred.tables)))
assert len(doc_true.tables) == len(
doc_pred.tables
), "document has different count of tables than expected."
for l, true_item in enumerate(doc_true.tables):
pred_item = doc_pred.tables[l]
assert (
true_item.num_rows == pred_item.num_rows
), "table does not have the same #-rows"
assert (
true_item.num_cols == pred_item.num_cols
), "table does not have the same #-cols"
assert true_item.data is not None, "documents are expected to have table data"
assert pred_item.data is not None, "documents are expected to have table data"
print("True: \n", true_item.export_to_dataframe().to_markdown())
print("Pred: \n", true_item.export_to_dataframe().to_markdown())
for i, row in enumerate(true_item.data):
for j, col in enumerate(true_item.data[i]):
# print("true: ", true_item.data[i][j].text)
# print("pred: ", pred_item.data[i][j].text)
# print("")
verify_text(
true_item.data[i][j].text, pred_item.data[i][j].text, fuzzy=fuzzy
)
assert (
true_item.data[i][j].obj_type == pred_item.data[i][j].obj_type
), "table-cell does not have the same type"
return True
def verify_tables_v2(doc_pred: DoclingDocument, doc_true: DoclingDocument, fuzzy: bool):
if not len(doc_true.tables) > 0:
# No tables to check
assert len(doc_pred.tables) == 0, "not expecting any table on this document"
return True
else:
assert len(doc_pred.tables) > 0, "no tables predicted, but expected in doc_true"
# print("Expected number of tables: {}, result: {}".format(len(doc_true.tables), len(doc_pred.tables)))
assert len(doc_true.tables) == len(
doc_pred.tables
), "document has different count of tables than expected."
for l, true_item in enumerate(doc_true.tables):
pred_item = doc_pred.tables[l]
assert (
true_item.data.num_rows == pred_item.data.num_rows
), "table does not have the same #-rows"
assert (
true_item.data.num_cols == pred_item.data.num_cols
), "table does not have the same #-cols"
assert true_item.data is not None, "documents are expected to have table data"
assert pred_item.data is not None, "documents are expected to have table data"
print("True: \n", true_item.export_to_dataframe().to_markdown())
print("Pred: \n", true_item.export_to_dataframe().to_markdown())
for i, row in enumerate(true_item.data.grid):
for j, col in enumerate(true_item.data.grid[i]):
# print("true: ", true_item.data[i][j].text)
# print("pred: ", pred_item.data[i][j].text)
# print("")
verify_text(
true_item.data.grid[i][j].text,
pred_item.data.grid[i][j].text,
fuzzy=fuzzy,
)
assert (
true_item.data.grid[i][j].column_header
== pred_item.data.grid[i][j].column_header
), "table-cell should be a column_header but prediction isn't"
assert (
true_item.data.grid[i][j].row_header
== pred_item.data.grid[i][j].row_header
), "table-cell should be a row_header but prediction isn't"
assert (
true_item.data.grid[i][j].row_section
== pred_item.data.grid[i][j].row_section
), "table-cell should be a row_section but prediction isn't"
return True
# def verify_output(doc_pred: DsDocument, doc_true: DsDocument):
# #assert verify_maintext(doc_pred, doc_true), "verify_maintext(doc_pred, doc_true)"
# assert verify_tables_v1(doc_pred, doc_true), "verify_tables(doc_pred, doc_true)"
# return True
def verify_md(doc_pred_md: str, doc_true_md: str, fuzzy: bool):
return verify_text(doc_true_md, doc_pred_md, fuzzy)
def verify_dt(doc_pred_dt: str, doc_true_dt: str, fuzzy: bool):
return verify_text(doc_true_dt, doc_pred_dt, fuzzy)
def verify_conversion_result_v1(
input_path: Path,
doc_result: ConversionResult,
generate: bool = False,
ocr_engine: str = None,
fuzzy: bool = False,
):
PageList = TypeAdapter(List[Page])
assert (
doc_result.status == ConversionStatus.SUCCESS
), f"Doc {input_path} did not convert successfully."
doc_pred_pages: List[Page] = doc_result.pages
doc_pred: DsDocument = doc_result.legacy_document
with warnings.catch_warnings():
warnings.simplefilter("ignore", DeprecationWarning)
doc_pred_md = doc_result.legacy_document.export_to_markdown()
doc_pred_dt = doc_result.legacy_document.export_to_document_tokens()
engine_suffix = "" if ocr_engine is None else f".{ocr_engine}"
gt_subpath = input_path.parent / "groundtruth" / "docling_v1" / input_path.name
pages_path = gt_subpath.with_suffix(f"{engine_suffix}.pages.json")
json_path = gt_subpath.with_suffix(f"{engine_suffix}.json")
md_path = gt_subpath.with_suffix(f"{engine_suffix}.md")
dt_path = gt_subpath.with_suffix(f"{engine_suffix}.doctags.txt")
if generate: # only used when re-generating truth
with open(pages_path, "w") as fw:
fw.write(json.dumps(doc_pred_pages, default=pydantic_encoder))
with open(json_path, "w") as fw:
fw.write(json.dumps(doc_pred, default=pydantic_encoder))
with open(md_path, "w") as fw:
fw.write(doc_pred_md)
with open(dt_path, "w") as fw:
fw.write(doc_pred_dt)
else: # default branch in test
with open(pages_path, "r") as fr:
doc_true_pages = PageList.validate_json(fr.read())
with open(json_path, "r") as fr:
doc_true: DsDocument = DsDocument.model_validate_json(fr.read())
with open(md_path, "r") as fr:
doc_true_md = fr.read()
with open(dt_path, "r") as fr:
doc_true_dt = fr.read()
if not fuzzy:
assert verify_cells(
doc_pred_pages, doc_true_pages
), f"Mismatch in PDF cell prediction for {input_path}"
# assert verify_output(
# doc_pred, doc_true
# ), f"Mismatch in JSON prediction for {input_path}"
assert verify_tables_v1(
doc_pred, doc_true, fuzzy=fuzzy
), f"verify_tables(doc_pred, doc_true) mismatch for {input_path}"
assert verify_md(
doc_pred_md, doc_true_md, fuzzy=fuzzy
), f"Mismatch in Markdown prediction for {input_path}"
assert verify_dt(
doc_pred_dt, doc_true_dt, fuzzy=fuzzy
), f"Mismatch in DocTags prediction for {input_path}"
def verify_conversion_result_v2(
input_path: Path,
doc_result: ConversionResult,
generate: bool = False,
ocr_engine: str = None,
fuzzy: bool = False,
):
PageList = TypeAdapter(List[Page])
assert (
doc_result.status == ConversionStatus.SUCCESS
), f"Doc {input_path} did not convert successfully."
doc_pred_pages: List[Page] = doc_result.pages
doc_pred: DoclingDocument = doc_result.document
doc_pred_md = doc_result.document.export_to_markdown()
doc_pred_dt = doc_result.document.export_to_document_tokens()
engine_suffix = "" if ocr_engine is None else f".{ocr_engine}"
gt_subpath = input_path.parent / "groundtruth" / "docling_v2" / input_path.name
pages_path = gt_subpath.with_suffix(f"{engine_suffix}.pages.json")
json_path = gt_subpath.with_suffix(f"{engine_suffix}.json")
md_path = gt_subpath.with_suffix(f"{engine_suffix}.md")
dt_path = gt_subpath.with_suffix(f"{engine_suffix}.doctags.txt")
if generate: # only used when re-generating truth
with open(pages_path, "w") as fw:
fw.write(json.dumps(doc_pred_pages, default=pydantic_encoder))
with open(json_path, "w") as fw:
fw.write(json.dumps(doc_pred, default=pydantic_encoder))
with open(md_path, "w") as fw:
fw.write(doc_pred_md)
with open(dt_path, "w") as fw:
fw.write(doc_pred_dt)
else: # default branch in test
with open(pages_path, "r") as fr:
doc_true_pages = PageList.validate_json(fr.read())
with open(json_path, "r") as fr:
doc_true: DoclingDocument = DoclingDocument.model_validate_json(fr.read())
with open(md_path, "r") as fr:
doc_true_md = fr.read()
with open(dt_path, "r") as fr:
doc_true_dt = fr.read()
if not fuzzy:
assert verify_cells(
doc_pred_pages, doc_true_pages
), f"Mismatch in PDF cell prediction for {input_path}"
# assert verify_output(
# doc_pred, doc_true
# ), f"Mismatch in JSON prediction for {input_path}"
assert verify_tables_v2(
doc_pred, doc_true, fuzzy=fuzzy
), f"verify_tables(doc_pred, doc_true) mismatch for {input_path}"
assert verify_md(
doc_pred_md, doc_true_md, fuzzy=fuzzy
), f"Mismatch in Markdown prediction for {input_path}"
assert verify_dt(
doc_pred_dt, doc_true_dt, fuzzy=fuzzy
), f"Mismatch in DocTags prediction for {input_path}"