docling/docs/examples/advanced_chunking_and_serialization.ipynb
Panos Vagenas 7c4c356e76
chore: fix chunking example data link (#1596)
Signed-off-by: Panos Vagenas <pva@zurich.ibm.com>
2025-05-16 08:44:47 +02:00

560 lines
35 KiB
Plaintext
Vendored

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Advanced chunking & serialization"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Overview"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this notebook we show how to customize the serialization strategies that come into\n",
"play during chunking."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will work with a document that contains some [picture annotations](../pictures_description):"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from docling_core.types.doc.document import DoclingDocument\n",
"\n",
"SOURCE = \"./data/2408.09869v3_enriched.json\"\n",
"\n",
"doc = DoclingDocument.load_from_json(SOURCE)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Below we define the chunker (for more details check out [Hybrid Chunking](../hybrid_chunking)):"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from docling_core.transforms.chunker.hybrid_chunker import HybridChunker\n",
"from docling_core.transforms.chunker.tokenizer.base import BaseTokenizer\n",
"from docling_core.transforms.chunker.tokenizer.huggingface import HuggingFaceTokenizer\n",
"from transformers import AutoTokenizer\n",
"\n",
"EMBED_MODEL_ID = \"sentence-transformers/all-MiniLM-L6-v2\"\n",
"\n",
"tokenizer: BaseTokenizer = HuggingFaceTokenizer(\n",
" tokenizer=AutoTokenizer.from_pretrained(EMBED_MODEL_ID),\n",
")\n",
"chunker = HybridChunker(tokenizer=tokenizer)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tokenizer.get_max_tokens()=512\n"
]
}
],
"source": [
"print(f\"{tokenizer.get_max_tokens()=}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Defining some helper methods:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from typing import Iterable, Optional\n",
"\n",
"from docling_core.transforms.chunker.base import BaseChunk\n",
"from docling_core.transforms.chunker.hierarchical_chunker import DocChunk\n",
"from docling_core.types.doc.labels import DocItemLabel\n",
"from rich.console import Console\n",
"from rich.panel import Panel\n",
"\n",
"console = Console(\n",
" width=200, # for getting Markdown tables rendered nicely\n",
")\n",
"\n",
"\n",
"def find_n_th_chunk_with_label(\n",
" iter: Iterable[BaseChunk], n: int, label: DocItemLabel\n",
") -> Optional[DocChunk]:\n",
" num_found = -1\n",
" for i, chunk in enumerate(iter):\n",
" doc_chunk = DocChunk.model_validate(chunk)\n",
" for it in doc_chunk.meta.doc_items:\n",
" if it.label == label:\n",
" num_found += 1\n",
" if num_found == n:\n",
" return i, chunk\n",
" return None, None\n",
"\n",
"\n",
"def print_chunk(chunks, chunk_pos):\n",
" chunk = chunks[chunk_pos]\n",
" ctx_text = chunker.contextualize(chunk=chunk)\n",
" num_tokens = tokenizer.count_tokens(text=ctx_text)\n",
" doc_items_refs = [it.self_ref for it in chunk.meta.doc_items]\n",
" title = f\"{chunk_pos=} {num_tokens=} {doc_items_refs=}\"\n",
" console.print(Panel(ctx_text, title=title))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Table serialization"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using the default strategy"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Below we inspect the first chunk containing a table — using the default serialization strategy:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Token indices sequence length is longer than the specified maximum sequence length for this model (652 > 512). Running this sequence through the model will result in indexing errors\n"
]
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">╭────────────────────────────────────────────────────────────── chunk_pos=13 num_tokens=426 doc_items_refs=['#/texts/72', '#/tables/0'] ───────────────────────────────────────────────────────────────╮\n",
"│ Docling Technical Report │\n",
"│ 4 Performance │\n",
"│ Table 1: Runtime characteristics of Docling with the standard model pipeline and settings, on our test dataset of 225 pages, on two different systems. OCR is disabled. We show the time-to-solution │\n",
"│ (TTS), computed throughput in pages per second, and the peak memory used (resident set size) for both the Docling-native PDF backend and for the pypdfium backend, using 4 and 16 threads. │\n",
"│ │\n",
"│ Apple M3 Max, Thread budget. = 4. Apple M3 Max, native backend.TTS = 177 s 167 s. Apple M3 Max, native backend.Pages/s = 1.27 1.34. Apple M3 Max, native backend.Mem = 6.20 GB. Apple M3 Max, │\n",
"│ pypdfium backend.TTS = 103 s 92 s. Apple M3 Max, pypdfium backend.Pages/s = 2.18 2.45. Apple M3 Max, pypdfium backend.Mem = 2.56 GB. (16 cores) Intel(R) Xeon E5-2690, Thread budget. = 16 4 16. (16 │\n",
"│ cores) Intel(R) Xeon E5-2690, native backend.TTS = 375 s 244 s. (16 cores) Intel(R) Xeon E5-2690, native backend.Pages/s = 0.60 0.92. (16 cores) Intel(R) Xeon E5-2690, native backend.Mem = 6.16 │\n",
"│ GB. (16 cores) Intel(R) Xeon E5-2690, pypdfium backend.TTS = 239 s 143 s. (16 cores) Intel(R) Xeon E5-2690, pypdfium backend.Pages/s = 0.94 1.57. (16 cores) Intel(R) Xeon E5-2690, pypdfium │\n",
"│ backend.Mem = 2.42 GB │\n",
"╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
"</pre>\n"
],
"text/plain": [
"╭────────────────────────────────────────────────────────────── chunk_pos=13 num_tokens=426 doc_items_refs=['#/texts/72', '#/tables/0'] ───────────────────────────────────────────────────────────────╮\n",
"│ Docling Technical Report │\n",
"│ 4 Performance │\n",
"│ Table 1: Runtime characteristics of Docling with the standard model pipeline and settings, on our test dataset of 225 pages, on two different systems. OCR is disabled. We show the time-to-solution │\n",
"│ (TTS), computed throughput in pages per second, and the peak memory used (resident set size) for both the Docling-native PDF backend and for the pypdfium backend, using 4 and 16 threads. │\n",
"│ │\n",
"│ Apple M3 Max, Thread budget. = 4. Apple M3 Max, native backend.TTS = 177 s 167 s. Apple M3 Max, native backend.Pages/s = 1.27 1.34. Apple M3 Max, native backend.Mem = 6.20 GB. Apple M3 Max, │\n",
"│ pypdfium backend.TTS = 103 s 92 s. Apple M3 Max, pypdfium backend.Pages/s = 2.18 2.45. Apple M3 Max, pypdfium backend.Mem = 2.56 GB. (16 cores) Intel(R) Xeon E5-2690, Thread budget. = 16 4 16. (16 │\n",
"│ cores) Intel(R) Xeon E5-2690, native backend.TTS = 375 s 244 s. (16 cores) Intel(R) Xeon E5-2690, native backend.Pages/s = 0.60 0.92. (16 cores) Intel(R) Xeon E5-2690, native backend.Mem = 6.16 │\n",
"│ GB. (16 cores) Intel(R) Xeon E5-2690, pypdfium backend.TTS = 239 s 143 s. (16 cores) Intel(R) Xeon E5-2690, pypdfium backend.Pages/s = 0.94 1.57. (16 cores) Intel(R) Xeon E5-2690, pypdfium │\n",
"│ backend.Mem = 2.42 GB │\n",
"╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"chunker = HybridChunker(tokenizer=tokenizer)\n",
"\n",
"chunk_iter = chunker.chunk(dl_doc=doc)\n",
"\n",
"chunks = list(chunk_iter)\n",
"i, chunk = find_n_th_chunk_with_label(chunks, n=0, label=DocItemLabel.TABLE)\n",
"print_chunk(\n",
" chunks=chunks,\n",
" chunk_pos=i,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<div class=\"alert alert-info\">\n",
" <strong>INFO</strong>: As you see above, using the <code>HybridChunker</code> can sometimes lead to a warning from the transformers library, however this is a \"false alarm\" — for details check <a href=\"https://docling-project.github.io/docling/faq/#hybridchunker-triggers-warning-token-indices-sequence-length-is-longer-than-the-specified-maximum-sequence-length-for-this-model\">here</a>.\n",
"</div>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Configuring a different strategy"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can configure a different serialization strategy. In the example below, we specify a different table serializer that serializes tables to Markdown instead of the triplet notation used by default:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">╭────────────────────────────────────────────────────────────── chunk_pos=13 num_tokens=431 doc_items_refs=['#/texts/72', '#/tables/0'] ───────────────────────────────────────────────────────────────╮\n",
"│ Docling Technical Report │\n",
"│ 4 Performance │\n",
"│ Table 1: Runtime characteristics of Docling with the standard model pipeline and settings, on our test dataset of 225 pages, on two different systems. OCR is disabled. We show the time-to-solution │\n",
"│ (TTS), computed throughput in pages per second, and the peak memory used (resident set size) for both the Docling-native PDF backend and for the pypdfium backend, using 4 and 16 threads. │\n",
"│ │\n",
"│ | CPU | Thread budget | native backend | native backend | native backend | pypdfium backend | pypdfium backend | pypdfium backend | │\n",
"│ |----------------------------------|-----------------|------------------|------------------|------------------|--------------------|--------------------|--------------------| │\n",
"│ | | | TTS | Pages/s | Mem | TTS | Pages/s | Mem | │\n",
"│ | Apple M3 Max | 4 | 177 s 167 s | 1.27 1.34 | 6.20 GB | 103 s 92 s | 2.18 2.45 | 2.56 GB | │\n",
"│ | (16 cores) Intel(R) Xeon E5-2690 | 16 4 16 | 375 s 244 s | 0.60 0.92 | 6.16 GB | 239 s 143 s | 0.94 1.57 | 2.42 GB | │\n",
"╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
"</pre>\n"
],
"text/plain": [
"╭────────────────────────────────────────────────────────────── chunk_pos=13 num_tokens=431 doc_items_refs=['#/texts/72', '#/tables/0'] ───────────────────────────────────────────────────────────────╮\n",
"│ Docling Technical Report │\n",
"│ 4 Performance │\n",
"│ Table 1: Runtime characteristics of Docling with the standard model pipeline and settings, on our test dataset of 225 pages, on two different systems. OCR is disabled. We show the time-to-solution │\n",
"│ (TTS), computed throughput in pages per second, and the peak memory used (resident set size) for both the Docling-native PDF backend and for the pypdfium backend, using 4 and 16 threads. │\n",
"│ │\n",
"│ | CPU | Thread budget | native backend | native backend | native backend | pypdfium backend | pypdfium backend | pypdfium backend | │\n",
"│ |----------------------------------|-----------------|------------------|------------------|------------------|--------------------|--------------------|--------------------| │\n",
"│ | | | TTS | Pages/s | Mem | TTS | Pages/s | Mem | │\n",
"│ | Apple M3 Max | 4 | 177 s 167 s | 1.27 1.34 | 6.20 GB | 103 s 92 s | 2.18 2.45 | 2.56 GB | │\n",
"│ | (16 cores) Intel(R) Xeon E5-2690 | 16 4 16 | 375 s 244 s | 0.60 0.92 | 6.16 GB | 239 s 143 s | 0.94 1.57 | 2.42 GB | │\n",
"╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from docling_core.transforms.chunker.hierarchical_chunker import (\n",
" ChunkingDocSerializer,\n",
" ChunkingSerializerProvider,\n",
")\n",
"from docling_core.transforms.serializer.markdown import MarkdownTableSerializer\n",
"\n",
"\n",
"class MDTableSerializerProvider(ChunkingSerializerProvider):\n",
" def get_serializer(self, doc):\n",
" return ChunkingDocSerializer(\n",
" doc=doc,\n",
" table_serializer=MarkdownTableSerializer(), # configuring a different table serializer\n",
" )\n",
"\n",
"\n",
"chunker = HybridChunker(\n",
" tokenizer=tokenizer,\n",
" serializer_provider=MDTableSerializerProvider(),\n",
")\n",
"\n",
"chunk_iter = chunker.chunk(dl_doc=doc)\n",
"\n",
"chunks = list(chunk_iter)\n",
"i, chunk = find_n_th_chunk_with_label(chunks, n=0, label=DocItemLabel.TABLE)\n",
"print_chunk(\n",
" chunks=chunks,\n",
" chunk_pos=i,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Picture serialization"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using the default strategy"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Below we inspect the first chunk containing a picture.\n",
"\n",
"Even when using the default strategy, we can modify the relevant parameters, e.g. which placeholder is used for pictures:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">╭───────────────────────────────────────────────── chunk_pos=0 num_tokens=117 doc_items_refs=['#/pictures/0', '#/texts/2', '#/texts/3', '#/texts/4'] ──────────────────────────────────────────────────╮\n",
"│ Docling Technical Report │\n",
"│ &lt;!-- image --&gt; │\n",
"│ Version 1.0 │\n",
"│ Christoph Auer Maksym Lysak Ahmed Nassar Michele Dolfi Nikolaos Livathinos Panos Vagenas Cesar Berrospi Ramis Matteo Omenetti Fabian Lindlbauer Kasper Dinkla Lokesh Mishra Yusik Kim Shubham Gupta │\n",
"│ Rafael Teixeira de Lima Valery Weber Lucas Morin Ingmar Meijer Viktor Kuropiatnyk Peter W. J. Staar │\n",
"│ AI4K Group, IBM Research R¨ uschlikon, Switzerland │\n",
"╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
"</pre>\n"
],
"text/plain": [
"╭───────────────────────────────────────────────── chunk_pos=0 num_tokens=117 doc_items_refs=['#/pictures/0', '#/texts/2', '#/texts/3', '#/texts/4'] ──────────────────────────────────────────────────╮\n",
"│ Docling Technical Report │\n",
"│ <!-- image --> │\n",
"│ Version 1.0 │\n",
"│ Christoph Auer Maksym Lysak Ahmed Nassar Michele Dolfi Nikolaos Livathinos Panos Vagenas Cesar Berrospi Ramis Matteo Omenetti Fabian Lindlbauer Kasper Dinkla Lokesh Mishra Yusik Kim Shubham Gupta │\n",
"│ Rafael Teixeira de Lima Valery Weber Lucas Morin Ingmar Meijer Viktor Kuropiatnyk Peter W. J. Staar │\n",
"│ AI4K Group, IBM Research R¨ uschlikon, Switzerland │\n",
"╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from docling_core.transforms.serializer.markdown import MarkdownParams\n",
"\n",
"\n",
"class ImgPlaceholderSerializerProvider(ChunkingSerializerProvider):\n",
" def get_serializer(self, doc):\n",
" return ChunkingDocSerializer(\n",
" doc=doc,\n",
" params=MarkdownParams(\n",
" image_placeholder=\"<!-- image -->\",\n",
" ),\n",
" )\n",
"\n",
"\n",
"chunker = HybridChunker(\n",
" tokenizer=tokenizer,\n",
" serializer_provider=ImgPlaceholderSerializerProvider(),\n",
")\n",
"\n",
"chunk_iter = chunker.chunk(dl_doc=doc)\n",
"\n",
"chunks = list(chunk_iter)\n",
"i, chunk = find_n_th_chunk_with_label(chunks, n=0, label=DocItemLabel.PICTURE)\n",
"print_chunk(\n",
" chunks=chunks,\n",
" chunk_pos=i,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using a custom strategy"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Below we define and use our custom picture serialization strategy which leverages picture annotations:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"from typing import Any\n",
"\n",
"from docling_core.transforms.serializer.base import (\n",
" BaseDocSerializer,\n",
" SerializationResult,\n",
")\n",
"from docling_core.transforms.serializer.common import create_ser_result\n",
"from docling_core.transforms.serializer.markdown import MarkdownPictureSerializer\n",
"from docling_core.types.doc.document import (\n",
" PictureClassificationData,\n",
" PictureDescriptionData,\n",
" PictureItem,\n",
" PictureMoleculeData,\n",
")\n",
"from typing_extensions import override\n",
"\n",
"\n",
"class AnnotationPictureSerializer(MarkdownPictureSerializer):\n",
" @override\n",
" def serialize(\n",
" self,\n",
" *,\n",
" item: PictureItem,\n",
" doc_serializer: BaseDocSerializer,\n",
" doc: DoclingDocument,\n",
" **kwargs: Any,\n",
" ) -> SerializationResult:\n",
" text_parts: list[str] = []\n",
" for annotation in item.annotations:\n",
" if isinstance(annotation, PictureClassificationData):\n",
" predicted_class = (\n",
" annotation.predicted_classes[0].class_name\n",
" if annotation.predicted_classes\n",
" else None\n",
" )\n",
" if predicted_class is not None:\n",
" text_parts.append(f\"Picture type: {predicted_class}\")\n",
" elif isinstance(annotation, PictureMoleculeData):\n",
" text_parts.append(f\"SMILES: {annotation.smi}\")\n",
" elif isinstance(annotation, PictureDescriptionData):\n",
" text_parts.append(f\"Picture description: {annotation.text}\")\n",
"\n",
" text_res = \"\\n\".join(text_parts)\n",
" text_res = doc_serializer.post_process(text=text_res)\n",
" return create_ser_result(text=text_res, span_source=item)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">╭───────────────────────────────────────────────── chunk_pos=0 num_tokens=128 doc_items_refs=['#/pictures/0', '#/texts/2', '#/texts/3', '#/texts/4'] ──────────────────────────────────────────────────╮\n",
"│ Docling Technical Report │\n",
"│ Picture description: In this image we can see a cartoon image of a duck holding a paper. │\n",
"│ Version 1.0 │\n",
"│ Christoph Auer Maksym Lysak Ahmed Nassar Michele Dolfi Nikolaos Livathinos Panos Vagenas Cesar Berrospi Ramis Matteo Omenetti Fabian Lindlbauer Kasper Dinkla Lokesh Mishra Yusik Kim Shubham Gupta │\n",
"│ Rafael Teixeira de Lima Valery Weber Lucas Morin Ingmar Meijer Viktor Kuropiatnyk Peter W. J. Staar │\n",
"│ AI4K Group, IBM Research R¨ uschlikon, Switzerland │\n",
"╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
"</pre>\n"
],
"text/plain": [
"╭───────────────────────────────────────────────── chunk_pos=0 num_tokens=128 doc_items_refs=['#/pictures/0', '#/texts/2', '#/texts/3', '#/texts/4'] ──────────────────────────────────────────────────╮\n",
"│ Docling Technical Report │\n",
"│ Picture description: In this image we can see a cartoon image of a duck holding a paper. │\n",
"│ Version 1.0 │\n",
"│ Christoph Auer Maksym Lysak Ahmed Nassar Michele Dolfi Nikolaos Livathinos Panos Vagenas Cesar Berrospi Ramis Matteo Omenetti Fabian Lindlbauer Kasper Dinkla Lokesh Mishra Yusik Kim Shubham Gupta │\n",
"│ Rafael Teixeira de Lima Valery Weber Lucas Morin Ingmar Meijer Viktor Kuropiatnyk Peter W. J. Staar │\n",
"│ AI4K Group, IBM Research R¨ uschlikon, Switzerland │\n",
"╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"class ImgAnnotationSerializerProvider(ChunkingSerializerProvider):\n",
" def get_serializer(self, doc: DoclingDocument):\n",
" return ChunkingDocSerializer(\n",
" doc=doc,\n",
" picture_serializer=AnnotationPictureSerializer(), # configuring a different picture serializer\n",
" )\n",
"\n",
"\n",
"chunker = HybridChunker(\n",
" tokenizer=tokenizer,\n",
" serializer_provider=ImgAnnotationSerializerProvider(),\n",
")\n",
"\n",
"chunk_iter = chunker.chunk(dl_doc=doc)\n",
"\n",
"chunks = list(chunk_iter)\n",
"i, chunk = find_n_th_chunk_with_label(chunks, n=0, label=DocItemLabel.PICTURE)\n",
"print_chunk(\n",
" chunks=chunks,\n",
" chunk_pos=i,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}