mirror of
https://github.com/docling-project/docling.git
synced 2025-06-27 05:20:05 +00:00

support running examples from root or subfolder Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
93 lines
3.0 KiB
Python
93 lines
3.0 KiB
Python
# WARNING
|
|
# This example demonstrates only how to develop a new enrichment model.
|
|
# It does not run the actual formula understanding model.
|
|
|
|
import logging
|
|
from collections.abc import Iterable
|
|
from pathlib import Path
|
|
|
|
from docling_core.types.doc import DocItemLabel, DoclingDocument, NodeItem, TextItem
|
|
|
|
from docling.datamodel.base_models import InputFormat, ItemAndImageEnrichmentElement
|
|
from docling.datamodel.pipeline_options import PdfPipelineOptions
|
|
from docling.document_converter import DocumentConverter, PdfFormatOption
|
|
from docling.models.base_model import BaseItemAndImageEnrichmentModel
|
|
from docling.pipeline.standard_pdf_pipeline import StandardPdfPipeline
|
|
|
|
|
|
class ExampleFormulaUnderstandingPipelineOptions(PdfPipelineOptions):
|
|
do_formula_understanding: bool = True
|
|
|
|
|
|
# A new enrichment model using both the document element and its image as input
|
|
class ExampleFormulaUnderstandingEnrichmentModel(BaseItemAndImageEnrichmentModel):
|
|
images_scale = 2.6
|
|
|
|
def __init__(self, enabled: bool):
|
|
self.enabled = enabled
|
|
|
|
def is_processable(self, doc: DoclingDocument, element: NodeItem) -> bool:
|
|
return (
|
|
self.enabled
|
|
and isinstance(element, TextItem)
|
|
and element.label == DocItemLabel.FORMULA
|
|
)
|
|
|
|
def __call__(
|
|
self,
|
|
doc: DoclingDocument,
|
|
element_batch: Iterable[ItemAndImageEnrichmentElement],
|
|
) -> Iterable[NodeItem]:
|
|
if not self.enabled:
|
|
return
|
|
|
|
for enrich_element in element_batch:
|
|
enrich_element.image.show()
|
|
|
|
yield enrich_element.item
|
|
|
|
|
|
# How the pipeline can be extended.
|
|
class ExampleFormulaUnderstandingPipeline(StandardPdfPipeline):
|
|
def __init__(self, pipeline_options: ExampleFormulaUnderstandingPipelineOptions):
|
|
super().__init__(pipeline_options)
|
|
self.pipeline_options: ExampleFormulaUnderstandingPipelineOptions
|
|
|
|
self.enrichment_pipe = [
|
|
ExampleFormulaUnderstandingEnrichmentModel(
|
|
enabled=self.pipeline_options.do_formula_understanding
|
|
)
|
|
]
|
|
|
|
if self.pipeline_options.do_formula_understanding:
|
|
self.keep_backend = True
|
|
|
|
@classmethod
|
|
def get_default_options(cls) -> ExampleFormulaUnderstandingPipelineOptions:
|
|
return ExampleFormulaUnderstandingPipelineOptions()
|
|
|
|
|
|
# Example main. In the final version, we simply have to set do_formula_understanding to true.
|
|
def main():
|
|
logging.basicConfig(level=logging.INFO)
|
|
|
|
data_folder = Path(__file__).parent / "../../tests/data"
|
|
input_doc_path = data_folder / "pdf/2203.01017v2.pdf"
|
|
|
|
pipeline_options = ExampleFormulaUnderstandingPipelineOptions()
|
|
pipeline_options.do_formula_understanding = True
|
|
|
|
doc_converter = DocumentConverter(
|
|
format_options={
|
|
InputFormat.PDF: PdfFormatOption(
|
|
pipeline_cls=ExampleFormulaUnderstandingPipeline,
|
|
pipeline_options=pipeline_options,
|
|
)
|
|
}
|
|
)
|
|
doc_converter.convert(input_doc_path)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|