mirror of
https://github.com/docling-project/docling.git
synced 2025-06-27 05:20:05 +00:00

* feat: adding new vlm-models support Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the transformers Signed-off-by: Peter Staar <taa@zurich.ibm.com> * got microsoft/Phi-4-multimodal-instruct to work Signed-off-by: Peter Staar <taa@zurich.ibm.com> * working on vlm's Signed-off-by: Peter Staar <taa@zurich.ibm.com> * refactoring the VLM part Signed-off-by: Peter Staar <taa@zurich.ibm.com> * all working, now serious refacgtoring necessary Signed-off-by: Peter Staar <taa@zurich.ibm.com> * refactoring the download_model Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added the formulate_prompt Signed-off-by: Peter Staar <taa@zurich.ibm.com> * pixtral 12b runs via MLX and native transformers Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added the VlmPredictionToken Signed-off-by: Peter Staar <taa@zurich.ibm.com> * refactoring minimal_vlm_pipeline Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the MyPy Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added pipeline_model_specializations file Signed-off-by: Peter Staar <taa@zurich.ibm.com> * need to get Phi4 working again ... Signed-off-by: Peter Staar <taa@zurich.ibm.com> * finalising last points for vlms support Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the pipeline for Phi4 Signed-off-by: Peter Staar <taa@zurich.ibm.com> * streamlining all code Signed-off-by: Peter Staar <taa@zurich.ibm.com> * reformatted the code Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixing the tests Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added the html backend to the VLM pipeline Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the static load_from_doctags Signed-off-by: Peter Staar <taa@zurich.ibm.com> * restore stable imports Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use AutoModelForVision2Seq for Pixtral and review example (including rename) Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove unused value Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * refactor instances of VLM models Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * skip compare example in CI Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use lowercase and uppercase only Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add new minimal_vlm example and refactor pipeline_options_vlm_model for cleaner import Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * rename pipeline_vlm_model_spec Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * move more argument to options and simplify model init Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add supported_devices Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove not-needed function Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * exclude minimal_vlm Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * missing file Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add message for transformers version Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * rename to specs Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use module import and remove MLX from non-darwin Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove hf_vlm_model and add extra_generation_args Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use single HF VLM model class Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove torch type Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add docs for vision models Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> --------- Signed-off-by: Peter Staar <taa@zurich.ibm.com> Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
61 lines
1.9 KiB
Python
61 lines
1.9 KiB
Python
from pathlib import Path
|
|
|
|
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
|
|
from docling.datamodel.accelerator_options import AcceleratorDevice
|
|
from docling.datamodel.base_models import InputFormat
|
|
from docling.datamodel.document import ConversionResult
|
|
from docling.datamodel.pipeline_options import PdfPipelineOptions
|
|
from docling.document_converter import DocumentConverter, PdfFormatOption
|
|
|
|
from .test_data_gen_flag import GEN_TEST_DATA
|
|
from .verify_utils import verify_conversion_result_v1, verify_conversion_result_v2
|
|
|
|
GENERATE_V1 = GEN_TEST_DATA
|
|
GENERATE_V2 = GEN_TEST_DATA
|
|
|
|
|
|
def get_pdf_paths():
|
|
# Define the directory you want to search
|
|
directory = Path("./tests/data/pdf/")
|
|
|
|
# List all PDF files in the directory and its subdirectories
|
|
pdf_files = sorted(directory.rglob("*.pdf"))
|
|
return pdf_files
|
|
|
|
|
|
def get_converter():
|
|
pipeline_options = PdfPipelineOptions()
|
|
pipeline_options.do_ocr = False
|
|
pipeline_options.do_table_structure = True
|
|
pipeline_options.table_structure_options.do_cell_matching = True
|
|
pipeline_options.accelerator_options.device = AcceleratorDevice.CPU
|
|
|
|
converter = DocumentConverter(
|
|
format_options={
|
|
InputFormat.PDF: PdfFormatOption(
|
|
pipeline_options=pipeline_options,
|
|
backend=DoclingParseDocumentBackend,
|
|
)
|
|
}
|
|
)
|
|
|
|
return converter
|
|
|
|
|
|
def test_e2e_pdfs_conversions():
|
|
pdf_paths = get_pdf_paths()
|
|
converter = get_converter()
|
|
|
|
for pdf_path in pdf_paths:
|
|
print(f"converting {pdf_path}")
|
|
|
|
doc_result: ConversionResult = converter.convert(pdf_path)
|
|
|
|
verify_conversion_result_v1(
|
|
input_path=pdf_path, doc_result=doc_result, generate=GENERATE_V1
|
|
)
|
|
|
|
verify_conversion_result_v2(
|
|
input_path=pdf_path, doc_result=doc_result, generate=GENERATE_V2
|
|
)
|