docling/docs/examples/minimal_vlm_pipeline.py
Christoph Auer 3c9fe76b70
feat: [Experimental] Introduce VLM pipeline using HF AutoModelForVision2Seq, featuring SmolDocling model (#1054)
* Skeleton for SmolDocling model and VLM Pipeline

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* wip smolDocling inference and vlm pipeline

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* WIP, first working code for inference of SmolDocling, and vlm pipeline assembly code, example included.

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Fixes to preserve page image and demo export to html

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Enabled figure support in vlm_pipeline

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Fix for table span compute in vlm_pipeline

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Properly propagating image data per page, together with predicted tags in VLM pipeline. This enables correct figure extraction and page numbers in provenances

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Cleaned up logs, added pages to vlm_pipeline, basic timing per page measurement in smol_docling models

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Replaced hardcoded otsl tokens with the ones from docling-core tokens.py enum

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Added tokens/sec measurement, improved example

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Added capability for vlm_pipeline to grab text from preconfigured backend

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Exposed "force_backend_text" as pipeline parameter

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Flipped keep_backend to True for vlm_pipeline assembly to work

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Updated vlm pipeline assembly and smol docling model code to support updated doctags

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Fixing doctags starting tag, that broke elements on first line during assembly

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Introduced SmolDoclingOptions to configure model parameters (such as query and artifacts path) via client code, see example in minimal_smol_docling. Provisioning for other potential vlm all-in-one models.

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Moved artifacts_path for SmolDocling into vlm_options instead of global pipeline option

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* New assembly code for latest model revision, updated prompt and parsing of doctags, updated logging

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Updated example of Smol Docling usage

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Added captions for the images for SmolDocling assembly code, improved provenance definition for all elements

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Update minimal smoldocling example

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Fix repo id

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Cleaned up unnecessary logging

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* More elegant solution in removing the input prompt

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* removed minimal_smol_docling example from CI checks

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Removed special html code wrapping when exporting to docling document, cleaned up comments

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Addressing PR comments, added enabled property to SmolDocling, and related VLM pipeline option, few other minor things

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Moved keep_backend = True to vlm pipeline

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* removed pipeline_options.generate_table_images from vlm_pipeline (deprecated in the pipelines)

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Added example on how to get original predicted doctags in minimal_smol_docling

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* removing changes from base_pipeline

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Replaced remaining strings to appropriate enums

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Updated poetry.lock

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* re-built poetry.lock

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Generalize and refactor VLM pipeline and models

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Rename example

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Move imports

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Expose control over using flash_attention_2

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Fix VLM example exclusion in CI

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Add back device_map and accelerate

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Make drawing code resilient against bad bboxes

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* chore: clean up code and comments

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* chore: more cleanup

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* chore: fix leftover .to(device)

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* fix: add proper table provenance

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

---------

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>
Co-authored-by: Maksym Lysak <mly@zurich.ibm.com>
2025-02-26 14:43:26 +01:00

97 lines
3.0 KiB
Python

import json
import time
from pathlib import Path
import yaml
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import (
AcceleratorDevice,
VlmPipelineOptions,
granite_vision_vlm_conversion_options,
smoldocling_vlm_conversion_options,
)
from docling.datamodel.settings import settings
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.vlm_pipeline import VlmPipeline
sources = [
"tests/data/2305.03393v1-pg9-img.png",
]
## Use experimental VlmPipeline
pipeline_options = VlmPipelineOptions()
# If force_backend_text = True, text from backend will be used instead of generated text
pipeline_options.force_backend_text = False
## On GPU systems, enable flash_attention_2 with CUDA:
# pipeline_options.accelerator_options.device = AcceleratorDevice.CUDA
# pipeline_options.accelerator_options.cuda_use_flash_attention2 = True
## Pick a VLM model. We choose SmolDocling-256M by default
pipeline_options.vlm_options = smoldocling_vlm_conversion_options
## Alternative VLM models:
# pipeline_options.vlm_options = granite_vision_vlm_conversion_options
from docling_core.types.doc import DocItemLabel, ImageRefMode
from docling_core.types.doc.document import DEFAULT_EXPORT_LABELS
## Set up pipeline for PDF or image inputs
converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_cls=VlmPipeline,
pipeline_options=pipeline_options,
),
InputFormat.IMAGE: PdfFormatOption(
pipeline_cls=VlmPipeline,
pipeline_options=pipeline_options,
),
}
)
out_path = Path("scratch")
out_path.mkdir(parents=True, exist_ok=True)
for source in sources:
start_time = time.time()
print("================================================")
print("Processing... {}".format(source))
print("================================================")
print("")
res = converter.convert(source)
print("------------------------------------------------")
print("MD:")
print("------------------------------------------------")
print("")
print(res.document.export_to_markdown())
for page in res.pages:
print("")
print("Predicted page in DOCTAGS:")
print(page.predictions.vlm_response.text)
res.document.save_as_html(
filename=Path("{}/{}.html".format(out_path, res.input.file.stem)),
image_mode=ImageRefMode.REFERENCED,
labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE],
)
with (out_path / f"{res.input.file.stem}.json").open("w") as fp:
fp.write(json.dumps(res.document.export_to_dict()))
pg_num = res.document.num_pages()
print("")
inference_time = time.time() - start_time
print(
f"Total document prediction time: {inference_time:.2f} seconds, pages: {pg_num}"
)
print("================================================")
print("done!")
print("================================================")