mirror of
https://github.com/docling-project/docling.git
synced 2025-06-27 05:20:05 +00:00

* Skeleton for SmolDocling model and VLM Pipeline Signed-off-by: Christoph Auer <cau@zurich.ibm.com> Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * wip smolDocling inference and vlm pipeline Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * WIP, first working code for inference of SmolDocling, and vlm pipeline assembly code, example included. Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Fixes to preserve page image and demo export to html Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Enabled figure support in vlm_pipeline Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Fix for table span compute in vlm_pipeline Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Properly propagating image data per page, together with predicted tags in VLM pipeline. This enables correct figure extraction and page numbers in provenances Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Cleaned up logs, added pages to vlm_pipeline, basic timing per page measurement in smol_docling models Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Replaced hardcoded otsl tokens with the ones from docling-core tokens.py enum Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Added tokens/sec measurement, improved example Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Added capability for vlm_pipeline to grab text from preconfigured backend Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Exposed "force_backend_text" as pipeline parameter Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Flipped keep_backend to True for vlm_pipeline assembly to work Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Updated vlm pipeline assembly and smol docling model code to support updated doctags Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Fixing doctags starting tag, that broke elements on first line during assembly Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Introduced SmolDoclingOptions to configure model parameters (such as query and artifacts path) via client code, see example in minimal_smol_docling. Provisioning for other potential vlm all-in-one models. Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Moved artifacts_path for SmolDocling into vlm_options instead of global pipeline option Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * New assembly code for latest model revision, updated prompt and parsing of doctags, updated logging Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Updated example of Smol Docling usage Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Added captions for the images for SmolDocling assembly code, improved provenance definition for all elements Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Update minimal smoldocling example Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Fix repo id Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Cleaned up unnecessary logging Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * More elegant solution in removing the input prompt Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * removed minimal_smol_docling example from CI checks Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Removed special html code wrapping when exporting to docling document, cleaned up comments Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Addressing PR comments, added enabled property to SmolDocling, and related VLM pipeline option, few other minor things Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Moved keep_backend = True to vlm pipeline Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * removed pipeline_options.generate_table_images from vlm_pipeline (deprecated in the pipelines) Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Added example on how to get original predicted doctags in minimal_smol_docling Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * removing changes from base_pipeline Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Replaced remaining strings to appropriate enums Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Updated poetry.lock Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * re-built poetry.lock Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Generalize and refactor VLM pipeline and models Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Rename example Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Move imports Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Expose control over using flash_attention_2 Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Fix VLM example exclusion in CI Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Add back device_map and accelerate Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Make drawing code resilient against bad bboxes Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * chore: clean up code and comments Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * chore: more cleanup Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * chore: fix leftover .to(device) Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * fix: add proper table provenance Signed-off-by: Christoph Auer <cau@zurich.ibm.com> --------- Signed-off-by: Christoph Auer <cau@zurich.ibm.com> Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> Co-authored-by: Maksym Lysak <mly@zurich.ibm.com>
97 lines
3.0 KiB
Python
97 lines
3.0 KiB
Python
import json
|
|
import time
|
|
from pathlib import Path
|
|
|
|
import yaml
|
|
|
|
from docling.datamodel.base_models import InputFormat
|
|
from docling.datamodel.pipeline_options import (
|
|
AcceleratorDevice,
|
|
VlmPipelineOptions,
|
|
granite_vision_vlm_conversion_options,
|
|
smoldocling_vlm_conversion_options,
|
|
)
|
|
from docling.datamodel.settings import settings
|
|
from docling.document_converter import DocumentConverter, PdfFormatOption
|
|
from docling.pipeline.vlm_pipeline import VlmPipeline
|
|
|
|
sources = [
|
|
"tests/data/2305.03393v1-pg9-img.png",
|
|
]
|
|
|
|
## Use experimental VlmPipeline
|
|
pipeline_options = VlmPipelineOptions()
|
|
# If force_backend_text = True, text from backend will be used instead of generated text
|
|
pipeline_options.force_backend_text = False
|
|
|
|
## On GPU systems, enable flash_attention_2 with CUDA:
|
|
# pipeline_options.accelerator_options.device = AcceleratorDevice.CUDA
|
|
# pipeline_options.accelerator_options.cuda_use_flash_attention2 = True
|
|
|
|
## Pick a VLM model. We choose SmolDocling-256M by default
|
|
pipeline_options.vlm_options = smoldocling_vlm_conversion_options
|
|
|
|
## Alternative VLM models:
|
|
# pipeline_options.vlm_options = granite_vision_vlm_conversion_options
|
|
|
|
from docling_core.types.doc import DocItemLabel, ImageRefMode
|
|
from docling_core.types.doc.document import DEFAULT_EXPORT_LABELS
|
|
|
|
## Set up pipeline for PDF or image inputs
|
|
converter = DocumentConverter(
|
|
format_options={
|
|
InputFormat.PDF: PdfFormatOption(
|
|
pipeline_cls=VlmPipeline,
|
|
pipeline_options=pipeline_options,
|
|
),
|
|
InputFormat.IMAGE: PdfFormatOption(
|
|
pipeline_cls=VlmPipeline,
|
|
pipeline_options=pipeline_options,
|
|
),
|
|
}
|
|
)
|
|
|
|
out_path = Path("scratch")
|
|
out_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
for source in sources:
|
|
start_time = time.time()
|
|
print("================================================")
|
|
print("Processing... {}".format(source))
|
|
print("================================================")
|
|
print("")
|
|
|
|
res = converter.convert(source)
|
|
|
|
print("------------------------------------------------")
|
|
print("MD:")
|
|
print("------------------------------------------------")
|
|
print("")
|
|
print(res.document.export_to_markdown())
|
|
|
|
for page in res.pages:
|
|
print("")
|
|
print("Predicted page in DOCTAGS:")
|
|
print(page.predictions.vlm_response.text)
|
|
|
|
res.document.save_as_html(
|
|
filename=Path("{}/{}.html".format(out_path, res.input.file.stem)),
|
|
image_mode=ImageRefMode.REFERENCED,
|
|
labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE],
|
|
)
|
|
|
|
with (out_path / f"{res.input.file.stem}.json").open("w") as fp:
|
|
fp.write(json.dumps(res.document.export_to_dict()))
|
|
|
|
pg_num = res.document.num_pages()
|
|
|
|
print("")
|
|
inference_time = time.time() - start_time
|
|
print(
|
|
f"Total document prediction time: {inference_time:.2f} seconds, pages: {pg_num}"
|
|
)
|
|
|
|
print("================================================")
|
|
print("done!")
|
|
print("================================================")
|