mirror of
https://github.com/docling-project/docling.git
synced 2025-06-27 05:20:05 +00:00

* add coverage calculation and push Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * new codecov version and usage of token Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * enable ruff formatter instead of black and isort Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * apply ruff lint fixes Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * apply ruff unsafe fixes Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add removed imports Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * runs 1 on linter issues Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * finalize linter fixes Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * Update pyproject.toml Co-authored-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com> Signed-off-by: Michele Dolfi <97102151+dolfim-ibm@users.noreply.github.com> --------- Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> Signed-off-by: Michele Dolfi <97102151+dolfim-ibm@users.noreply.github.com> Co-authored-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com>
481 lines
17 KiB
Python
481 lines
17 KiB
Python
import json
|
|
import os
|
|
import warnings
|
|
from pathlib import Path
|
|
from typing import List, Optional
|
|
|
|
from docling_core.types.doc import (
|
|
DocItem,
|
|
DoclingDocument,
|
|
PictureItem,
|
|
TableItem,
|
|
TextItem,
|
|
)
|
|
from docling_core.types.legacy_doc.document import ExportedCCSDocument as DsDocument
|
|
from PIL import Image as PILImage
|
|
from pydantic import TypeAdapter
|
|
from pydantic.json import pydantic_encoder
|
|
|
|
from docling.datamodel.base_models import ConversionStatus, Page
|
|
from docling.datamodel.document import ConversionResult
|
|
|
|
|
|
def levenshtein(str1: str, str2: str) -> int:
|
|
# Ensure str1 is the shorter string to optimize memory usage
|
|
if len(str1) > len(str2):
|
|
str1, str2 = str2, str1
|
|
|
|
# Previous and current row buffers
|
|
previous_row = list(range(len(str2) + 1))
|
|
current_row = [0] * (len(str2) + 1)
|
|
|
|
# Compute the Levenshtein distance row by row
|
|
for i, c1 in enumerate(str1, start=1):
|
|
current_row[0] = i
|
|
for j, c2 in enumerate(str2, start=1):
|
|
insertions = previous_row[j] + 1
|
|
deletions = current_row[j - 1] + 1
|
|
substitutions = previous_row[j - 1] + (c1 != c2)
|
|
current_row[j] = min(insertions, deletions, substitutions)
|
|
# Swap rows for the next iteration
|
|
previous_row, current_row = current_row, previous_row
|
|
|
|
# The result is in the last element of the previous row
|
|
return previous_row[-1]
|
|
|
|
|
|
def verify_text(gt: str, pred: str, fuzzy: bool, fuzzy_threshold: float = 0.4):
|
|
if len(gt) == 0 or not fuzzy:
|
|
assert gt == pred, f"{gt}!={pred}"
|
|
else:
|
|
dist = levenshtein(gt, pred)
|
|
diff = dist / len(gt)
|
|
assert diff < fuzzy_threshold, f"{gt}!~{pred}"
|
|
return True
|
|
|
|
|
|
def verify_cells(doc_pred_pages: List[Page], doc_true_pages: List[Page]):
|
|
assert len(doc_pred_pages) == len(doc_true_pages), (
|
|
"pred- and true-doc do not have the same number of pages"
|
|
)
|
|
|
|
for pid, page_true_item in enumerate(doc_true_pages):
|
|
num_true_cells = len(page_true_item.cells)
|
|
num_pred_cells = len(doc_pred_pages[pid].cells)
|
|
|
|
assert num_true_cells == num_pred_cells, (
|
|
f"num_true_cells!=num_pred_cells {num_true_cells}!={num_pred_cells}"
|
|
)
|
|
|
|
for cid, cell_true_item in enumerate(page_true_item.cells):
|
|
cell_pred_item = doc_pred_pages[pid].cells[cid]
|
|
|
|
true_text = cell_true_item.text
|
|
pred_text = cell_pred_item.text
|
|
assert true_text == pred_text, f"{true_text}!={pred_text}"
|
|
|
|
true_bbox = cell_true_item.rect.to_bounding_box().as_tuple()
|
|
pred_bbox = cell_pred_item.rect.to_bounding_box().as_tuple()
|
|
assert true_bbox == pred_bbox, (
|
|
f"bbox is not the same: {true_bbox} != {pred_bbox}"
|
|
)
|
|
|
|
return True
|
|
|
|
|
|
# def verify_maintext(doc_pred: DsDocument, doc_true: DsDocument):
|
|
# assert doc_true.main_text is not None, "doc_true cannot be None"
|
|
# assert doc_pred.main_text is not None, "doc_true cannot be None"
|
|
#
|
|
# assert len(doc_true.main_text) == len(
|
|
# doc_pred.main_text
|
|
# ), f"document has different length of main-text than expected. {len(doc_true.main_text)}!={len(doc_pred.main_text)}"
|
|
#
|
|
# for l, true_item in enumerate(doc_true.main_text):
|
|
# pred_item = doc_pred.main_text[l]
|
|
# # Validate type
|
|
# assert (
|
|
# true_item.obj_type == pred_item.obj_type
|
|
# ), f"Item[{l}] type does not match. expected[{true_item.obj_type}] != predicted [{pred_item.obj_type}]"
|
|
#
|
|
# # Validate text ceels
|
|
# if isinstance(true_item, BaseText):
|
|
# assert isinstance(
|
|
# pred_item, BaseText
|
|
# ), f"{pred_item} is not a BaseText element, but {true_item} is."
|
|
# assert true_item.text == pred_item.text
|
|
#
|
|
# return True
|
|
|
|
|
|
def verify_tables_v1(doc_pred: DsDocument, doc_true: DsDocument, fuzzy: bool):
|
|
if doc_true.tables is None:
|
|
# No tables to check
|
|
assert doc_pred.tables is None, "not expecting any table on this document"
|
|
return True
|
|
|
|
assert doc_pred.tables is not None, "no tables predicted, but expected in doc_true"
|
|
|
|
# print("Expected number of tables: {}, result: {}".format(len(doc_true.tables), len(doc_pred.tables)))
|
|
|
|
assert len(doc_true.tables) == len(doc_pred.tables), (
|
|
"document has different count of tables than expected."
|
|
)
|
|
|
|
for ix, true_item in enumerate(doc_true.tables):
|
|
pred_item = doc_pred.tables[ix]
|
|
|
|
assert true_item.num_rows == pred_item.num_rows, (
|
|
"table does not have the same #-rows"
|
|
)
|
|
assert true_item.num_cols == pred_item.num_cols, (
|
|
"table does not have the same #-cols"
|
|
)
|
|
|
|
assert true_item.data is not None, "documents are expected to have table data"
|
|
assert pred_item.data is not None, "documents are expected to have table data"
|
|
|
|
print("True: \n", true_item.export_to_dataframe().to_markdown())
|
|
print("Pred: \n", true_item.export_to_dataframe().to_markdown())
|
|
|
|
for i, row in enumerate(true_item.data):
|
|
for j, col in enumerate(true_item.data[i]):
|
|
# print("true: ", true_item.data[i][j].text)
|
|
# print("pred: ", pred_item.data[i][j].text)
|
|
# print("")
|
|
|
|
verify_text(
|
|
true_item.data[i][j].text, pred_item.data[i][j].text, fuzzy=fuzzy
|
|
)
|
|
|
|
assert true_item.data[i][j].obj_type == pred_item.data[i][j].obj_type, (
|
|
"table-cell does not have the same type"
|
|
)
|
|
|
|
return True
|
|
|
|
|
|
def verify_table_v2(true_item: TableItem, pred_item: TableItem, fuzzy: bool):
|
|
assert true_item.data.num_rows == pred_item.data.num_rows, (
|
|
"table does not have the same #-rows"
|
|
)
|
|
assert true_item.data.num_cols == pred_item.data.num_cols, (
|
|
"table does not have the same #-cols"
|
|
)
|
|
|
|
assert true_item.data is not None, "documents are expected to have table data"
|
|
assert pred_item.data is not None, "documents are expected to have table data"
|
|
|
|
# print("True: \n", true_item.export_to_dataframe().to_markdown())
|
|
# print("Pred: \n", true_item.export_to_dataframe().to_markdown())
|
|
|
|
for i, row in enumerate(true_item.data.grid):
|
|
for j, col in enumerate(true_item.data.grid[i]):
|
|
# print("true: ", true_item.data[i][j].text)
|
|
# print("pred: ", pred_item.data[i][j].text)
|
|
# print("")
|
|
|
|
verify_text(
|
|
true_item.data.grid[i][j].text,
|
|
pred_item.data.grid[i][j].text,
|
|
fuzzy=fuzzy,
|
|
)
|
|
|
|
assert (
|
|
true_item.data.grid[i][j].column_header
|
|
== pred_item.data.grid[i][j].column_header
|
|
), "table-cell should be a column_header but prediction isn't"
|
|
|
|
assert (
|
|
true_item.data.grid[i][j].row_header
|
|
== pred_item.data.grid[i][j].row_header
|
|
), "table-cell should be a row_header but prediction isn't"
|
|
|
|
assert (
|
|
true_item.data.grid[i][j].row_section
|
|
== pred_item.data.grid[i][j].row_section
|
|
), "table-cell should be a row_section but prediction isn't"
|
|
|
|
return True
|
|
|
|
|
|
def verify_picture_image_v2(
|
|
true_image: PILImage.Image, pred_item: Optional[PILImage.Image]
|
|
):
|
|
assert pred_item is not None, "predicted image is None"
|
|
assert true_image.size == pred_item.size
|
|
assert true_image.mode == pred_item.mode
|
|
# assert true_image.tobytes() == pred_item.tobytes()
|
|
return True
|
|
|
|
|
|
# def verify_output(doc_pred: DsDocument, doc_true: DsDocument):
|
|
# #assert verify_maintext(doc_pred, doc_true), "verify_maintext(doc_pred, doc_true)"
|
|
# assert verify_tables_v1(doc_pred, doc_true), "verify_tables(doc_pred, doc_true)"
|
|
# return True
|
|
|
|
|
|
def verify_docitems(doc_pred: DoclingDocument, doc_true: DoclingDocument, fuzzy: bool):
|
|
assert len(doc_pred.texts) == len(doc_true.texts), "Text lengths do not match."
|
|
|
|
assert len(doc_true.tables) == len(doc_pred.tables), (
|
|
"document has different count of tables than expected."
|
|
)
|
|
|
|
for (true_item, _true_level), (pred_item, _pred_level) in zip(
|
|
doc_true.iterate_items(), doc_pred.iterate_items()
|
|
):
|
|
if not isinstance(true_item, DocItem):
|
|
continue
|
|
assert isinstance(pred_item, DocItem), "Test item is not a DocItem"
|
|
|
|
# Validate type
|
|
assert true_item.label == pred_item.label, "Object label does not match."
|
|
|
|
# Validate provenance
|
|
assert len(true_item.prov) == len(pred_item.prov), "Length of prov mismatch"
|
|
if len(true_item.prov) > 0:
|
|
true_prov = true_item.prov[0]
|
|
pred_prov = pred_item.prov[0]
|
|
|
|
assert true_prov.page_no == pred_prov.page_no, "Page provenance mistmatch"
|
|
|
|
# TODO: add bbox check with tolerance
|
|
|
|
# Validate text content
|
|
if isinstance(true_item, TextItem):
|
|
assert isinstance(pred_item, TextItem), (
|
|
"Test item is not a TextItem as the expected one "
|
|
f"{true_item=} "
|
|
f"{pred_item=} "
|
|
)
|
|
|
|
assert verify_text(true_item.text, pred_item.text, fuzzy=fuzzy)
|
|
|
|
# Validate table content
|
|
if isinstance(true_item, TableItem):
|
|
assert isinstance(pred_item, TableItem), (
|
|
"Test item is not a TableItem as the expected one"
|
|
)
|
|
assert verify_table_v2(true_item, pred_item, fuzzy=fuzzy), (
|
|
"Tables not matching"
|
|
)
|
|
|
|
# Validate picture content
|
|
if isinstance(true_item, PictureItem):
|
|
assert isinstance(pred_item, PictureItem), (
|
|
"Test item is not a PictureItem as the expected one"
|
|
)
|
|
|
|
true_image = true_item.get_image(doc=doc_true)
|
|
pred_image = true_item.get_image(doc=doc_pred)
|
|
if true_image is not None:
|
|
assert verify_picture_image_v2(true_image, pred_image), (
|
|
"Picture image mismatch"
|
|
)
|
|
|
|
# TODO: check picture annotations
|
|
|
|
return True
|
|
|
|
|
|
def verify_md(doc_pred_md: str, doc_true_md: str, fuzzy: bool):
|
|
return verify_text(doc_true_md, doc_pred_md, fuzzy)
|
|
|
|
|
|
def verify_dt(doc_pred_dt: str, doc_true_dt: str, fuzzy: bool):
|
|
return verify_text(doc_true_dt, doc_pred_dt, fuzzy)
|
|
|
|
|
|
def verify_conversion_result_v1(
|
|
input_path: Path,
|
|
doc_result: ConversionResult,
|
|
generate: bool = False,
|
|
ocr_engine: Optional[str] = None,
|
|
fuzzy: bool = False,
|
|
):
|
|
PageList = TypeAdapter(List[Page])
|
|
|
|
assert doc_result.status == ConversionStatus.SUCCESS, (
|
|
f"Doc {input_path} did not convert successfully."
|
|
)
|
|
|
|
doc_pred_pages: List[Page] = doc_result.pages
|
|
doc_pred: DsDocument = doc_result.legacy_document
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore", DeprecationWarning)
|
|
doc_pred_md = doc_result.legacy_document.export_to_markdown()
|
|
doc_pred_dt = doc_result.legacy_document.export_to_document_tokens()
|
|
|
|
engine_suffix = "" if ocr_engine is None else f".{ocr_engine}"
|
|
|
|
gt_subpath = input_path.parent / "groundtruth" / "docling_v1" / input_path.name
|
|
if str(input_path.parent).endswith("pdf"):
|
|
gt_subpath = (
|
|
input_path.parent.parent / "groundtruth" / "docling_v1" / input_path.name
|
|
)
|
|
|
|
pages_path = gt_subpath.with_suffix(f"{engine_suffix}.pages.json")
|
|
json_path = gt_subpath.with_suffix(f"{engine_suffix}.json")
|
|
md_path = gt_subpath.with_suffix(f"{engine_suffix}.md")
|
|
dt_path = gt_subpath.with_suffix(f"{engine_suffix}.doctags.txt")
|
|
|
|
if generate: # only used when re-generating truth
|
|
pages_path.parent.mkdir(parents=True, exist_ok=True)
|
|
with open(pages_path, "w") as fw:
|
|
fw.write(json.dumps(doc_pred_pages, default=pydantic_encoder))
|
|
|
|
json_path.parent.mkdir(parents=True, exist_ok=True)
|
|
with open(json_path, "w") as fw:
|
|
fw.write(json.dumps(doc_pred, default=pydantic_encoder))
|
|
|
|
md_path.parent.mkdir(parents=True, exist_ok=True)
|
|
with open(md_path, "w") as fw:
|
|
fw.write(doc_pred_md)
|
|
|
|
dt_path.parent.mkdir(parents=True, exist_ok=True)
|
|
with open(dt_path, "w") as fw:
|
|
fw.write(doc_pred_dt)
|
|
else: # default branch in test
|
|
with open(pages_path) as fr:
|
|
doc_true_pages = PageList.validate_json(fr.read())
|
|
|
|
with open(json_path) as fr:
|
|
doc_true: DsDocument = DsDocument.model_validate_json(fr.read())
|
|
|
|
with open(md_path) as fr:
|
|
doc_true_md = fr.read()
|
|
|
|
with open(dt_path) as fr:
|
|
doc_true_dt = fr.read()
|
|
|
|
if not fuzzy:
|
|
assert verify_cells(doc_pred_pages, doc_true_pages), (
|
|
f"Mismatch in PDF cell prediction for {input_path}"
|
|
)
|
|
|
|
# assert verify_output(
|
|
# doc_pred, doc_true
|
|
# ), f"Mismatch in JSON prediction for {input_path}"
|
|
|
|
assert verify_tables_v1(doc_pred, doc_true, fuzzy=fuzzy), (
|
|
f"verify_tables(doc_pred, doc_true) mismatch for {input_path}"
|
|
)
|
|
|
|
assert verify_md(doc_pred_md, doc_true_md, fuzzy=fuzzy), (
|
|
f"Mismatch in Markdown prediction for {input_path}"
|
|
)
|
|
|
|
assert verify_dt(doc_pred_dt, doc_true_dt, fuzzy=fuzzy), (
|
|
f"Mismatch in DocTags prediction for {input_path}"
|
|
)
|
|
|
|
|
|
def verify_conversion_result_v2(
|
|
input_path: Path,
|
|
doc_result: ConversionResult,
|
|
generate: bool = False,
|
|
ocr_engine: Optional[str] = None,
|
|
fuzzy: bool = False,
|
|
):
|
|
PageList = TypeAdapter(List[Page])
|
|
|
|
assert doc_result.status == ConversionStatus.SUCCESS, (
|
|
f"Doc {input_path} did not convert successfully."
|
|
)
|
|
|
|
doc_pred_pages: List[Page] = doc_result.pages
|
|
doc_pred: DoclingDocument = doc_result.document
|
|
doc_pred_md = doc_result.document.export_to_markdown()
|
|
doc_pred_dt = doc_result.document.export_to_document_tokens()
|
|
|
|
engine_suffix = "" if ocr_engine is None else f".{ocr_engine}"
|
|
|
|
gt_subpath = input_path.parent / "groundtruth" / "docling_v2" / input_path.name
|
|
if str(input_path.parent).endswith("pdf"):
|
|
gt_subpath = (
|
|
input_path.parent.parent / "groundtruth" / "docling_v2" / input_path.name
|
|
)
|
|
|
|
pages_path = gt_subpath.with_suffix(f"{engine_suffix}.pages.json")
|
|
json_path = gt_subpath.with_suffix(f"{engine_suffix}.json")
|
|
md_path = gt_subpath.with_suffix(f"{engine_suffix}.md")
|
|
dt_path = gt_subpath.with_suffix(f"{engine_suffix}.doctags.txt")
|
|
|
|
if generate: # only used when re-generating truth
|
|
pages_path.parent.mkdir(parents=True, exist_ok=True)
|
|
with open(pages_path, "w") as fw:
|
|
fw.write(json.dumps(doc_pred_pages, default=pydantic_encoder))
|
|
|
|
json_path.parent.mkdir(parents=True, exist_ok=True)
|
|
with open(json_path, "w") as fw:
|
|
fw.write(json.dumps(doc_pred, default=pydantic_encoder))
|
|
|
|
md_path.parent.mkdir(parents=True, exist_ok=True)
|
|
with open(md_path, "w") as fw:
|
|
fw.write(doc_pred_md)
|
|
|
|
dt_path.parent.mkdir(parents=True, exist_ok=True)
|
|
with open(dt_path, "w") as fw:
|
|
fw.write(doc_pred_dt)
|
|
else: # default branch in test
|
|
with open(pages_path) as fr:
|
|
doc_true_pages = PageList.validate_json(fr.read())
|
|
|
|
with open(json_path) as fr:
|
|
doc_true: DoclingDocument = DoclingDocument.model_validate_json(fr.read())
|
|
|
|
with open(md_path) as fr:
|
|
doc_true_md = fr.read()
|
|
|
|
with open(dt_path) as fr:
|
|
doc_true_dt = fr.read()
|
|
|
|
if not fuzzy:
|
|
assert verify_cells(doc_pred_pages, doc_true_pages), (
|
|
f"Mismatch in PDF cell prediction for {input_path}"
|
|
)
|
|
|
|
# assert verify_output(
|
|
# doc_pred, doc_true
|
|
# ), f"Mismatch in JSON prediction for {input_path}"
|
|
|
|
assert verify_docitems(doc_pred, doc_true, fuzzy=fuzzy), (
|
|
f"verify_docling_document(doc_pred, doc_true) mismatch for {input_path}"
|
|
)
|
|
|
|
assert verify_md(doc_pred_md, doc_true_md, fuzzy=fuzzy), (
|
|
f"Mismatch in Markdown prediction for {input_path}"
|
|
)
|
|
|
|
assert verify_dt(doc_pred_dt, doc_true_dt, fuzzy=fuzzy), (
|
|
f"Mismatch in DocTags prediction for {input_path}"
|
|
)
|
|
|
|
|
|
def verify_document(pred_doc: DoclingDocument, gtfile: str, generate: bool = False):
|
|
if not os.path.exists(gtfile) or generate:
|
|
with open(gtfile, "w") as fw:
|
|
json.dump(pred_doc.export_to_dict(), fw, indent=2)
|
|
|
|
return True
|
|
else:
|
|
with open(gtfile) as fr:
|
|
true_doc = DoclingDocument.model_validate_json(fr.read())
|
|
|
|
return verify_docitems(pred_doc, true_doc, fuzzy=False)
|
|
|
|
|
|
def verify_export(pred_text: str, gtfile: str, generate: bool = False) -> bool:
|
|
file = Path(gtfile)
|
|
|
|
if not file.exists() or generate:
|
|
with file.open("w") as fw:
|
|
fw.write(pred_text)
|
|
return True
|
|
|
|
with file.open("r") as fr:
|
|
true_text = fr.read()
|
|
|
|
return pred_text == true_text
|