docling/docs/examples/develop_formula_understanding.py
Mingxuan Zhao ff351fd40c
docs: Describe examples (#2262)
* Update .py examples with clearer guidance,
update out of date imports and calls

Signed-off-by: Mingxuan Zhao <43148277+mingxzhao@users.noreply.github.com>

* Fix minimal.py string error, fix ruff format error

Signed-off-by: Mingxuan Zhao <43148277+mingxzhao@users.noreply.github.com>

* fix more CI issues

Signed-off-by: Mingxuan Zhao <43148277+mingxzhao@users.noreply.github.com>

---------

Signed-off-by: Mingxuan Zhao <43148277+mingxzhao@users.noreply.github.com>
2025-09-16 16:00:38 +02:00

110 lines
3.7 KiB
Python
Vendored

# %% [markdown]
# Developing an enrichment model example (formula understanding: scaffold only).
#
# What this example does
# - Shows how to define pipeline options, an enrichment model, and extend a pipeline.
# - Displays cropped images of formula items and yields them back unchanged.
#
# Important
# - This is a development scaffold; it does not run a real formula understanding model.
#
# How to run
# - From the repo root: `python docs/examples/develop_formula_understanding.py`.
#
# Notes
# - Set `do_formula_understanding=True` to enable the example enrichment stage.
# - Extends `StandardPdfPipeline` and keeps the backend when enrichment is enabled.
# %%
import logging
from collections.abc import Iterable
from pathlib import Path
from docling_core.types.doc import DocItemLabel, DoclingDocument, NodeItem, TextItem
from docling.datamodel.base_models import InputFormat, ItemAndImageEnrichmentElement
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.models.base_model import BaseItemAndImageEnrichmentModel
from docling.pipeline.standard_pdf_pipeline import StandardPdfPipeline
class ExampleFormulaUnderstandingPipelineOptions(PdfPipelineOptions):
do_formula_understanding: bool = True
# A new enrichment model using both the document element and its image as input
class ExampleFormulaUnderstandingEnrichmentModel(BaseItemAndImageEnrichmentModel):
images_scale = 2.6
def __init__(self, enabled: bool):
self.enabled = enabled
def is_processable(self, doc: DoclingDocument, element: NodeItem) -> bool:
return (
self.enabled
and isinstance(element, TextItem)
and element.label == DocItemLabel.FORMULA
)
def __call__(
self,
doc: DoclingDocument,
element_batch: Iterable[ItemAndImageEnrichmentElement],
) -> Iterable[NodeItem]:
if not self.enabled:
return
for enrich_element in element_batch:
# Opens a window for each cropped formula image; comment this out when
# running headless or processing many items to avoid blocking spam.
enrich_element.image.show()
yield enrich_element.item
# How the pipeline can be extended.
class ExampleFormulaUnderstandingPipeline(StandardPdfPipeline):
def __init__(self, pipeline_options: ExampleFormulaUnderstandingPipelineOptions):
super().__init__(pipeline_options)
self.pipeline_options: ExampleFormulaUnderstandingPipelineOptions
self.enrichment_pipe = [
ExampleFormulaUnderstandingEnrichmentModel(
enabled=self.pipeline_options.do_formula_understanding
)
]
if self.pipeline_options.do_formula_understanding:
self.keep_backend = True
@classmethod
def get_default_options(cls) -> ExampleFormulaUnderstandingPipelineOptions:
return ExampleFormulaUnderstandingPipelineOptions()
# Example main. In the final version, we simply have to set do_formula_understanding to true.
def main():
logging.basicConfig(level=logging.INFO)
data_folder = Path(__file__).parent / "../../tests/data"
input_doc_path = data_folder / "pdf/2203.01017v2.pdf"
pipeline_options = ExampleFormulaUnderstandingPipelineOptions()
pipeline_options.do_formula_understanding = True
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_cls=ExampleFormulaUnderstandingPipeline,
pipeline_options=pipeline_options,
)
}
)
doc_converter.convert(input_doc_path)
if __name__ == "__main__":
main()