mirror of
https://github.com/docling-project/docling.git
synced 2025-06-27 05:20:05 +00:00

* feat: adding new vlm-models support Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the transformers Signed-off-by: Peter Staar <taa@zurich.ibm.com> * got microsoft/Phi-4-multimodal-instruct to work Signed-off-by: Peter Staar <taa@zurich.ibm.com> * working on vlm's Signed-off-by: Peter Staar <taa@zurich.ibm.com> * refactoring the VLM part Signed-off-by: Peter Staar <taa@zurich.ibm.com> * all working, now serious refacgtoring necessary Signed-off-by: Peter Staar <taa@zurich.ibm.com> * refactoring the download_model Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added the formulate_prompt Signed-off-by: Peter Staar <taa@zurich.ibm.com> * pixtral 12b runs via MLX and native transformers Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added the VlmPredictionToken Signed-off-by: Peter Staar <taa@zurich.ibm.com> * refactoring minimal_vlm_pipeline Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the MyPy Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added pipeline_model_specializations file Signed-off-by: Peter Staar <taa@zurich.ibm.com> * need to get Phi4 working again ... Signed-off-by: Peter Staar <taa@zurich.ibm.com> * finalising last points for vlms support Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the pipeline for Phi4 Signed-off-by: Peter Staar <taa@zurich.ibm.com> * streamlining all code Signed-off-by: Peter Staar <taa@zurich.ibm.com> * reformatted the code Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixing the tests Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added the html backend to the VLM pipeline Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the static load_from_doctags Signed-off-by: Peter Staar <taa@zurich.ibm.com> * restore stable imports Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use AutoModelForVision2Seq for Pixtral and review example (including rename) Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove unused value Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * refactor instances of VLM models Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * skip compare example in CI Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use lowercase and uppercase only Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add new minimal_vlm example and refactor pipeline_options_vlm_model for cleaner import Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * rename pipeline_vlm_model_spec Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * move more argument to options and simplify model init Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add supported_devices Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove not-needed function Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * exclude minimal_vlm Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * missing file Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add message for transformers version Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * rename to specs Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use module import and remove MLX from non-darwin Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove hf_vlm_model and add extra_generation_args Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use single HF VLM model class Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove torch type Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add docs for vision models Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> --------- Signed-off-by: Peter Staar <taa@zurich.ibm.com> Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
161 lines
5.2 KiB
Python
Vendored
161 lines
5.2 KiB
Python
Vendored
# Compare VLM models
|
|
# ==================
|
|
#
|
|
# This example runs the VLM pipeline with different vision-language models.
|
|
# Their runtime as well output quality is compared.
|
|
|
|
import json
|
|
import sys
|
|
import time
|
|
from pathlib import Path
|
|
|
|
from docling_core.types.doc import DocItemLabel, ImageRefMode
|
|
from docling_core.types.doc.document import DEFAULT_EXPORT_LABELS
|
|
from tabulate import tabulate
|
|
|
|
from docling.datamodel import vlm_model_specs
|
|
from docling.datamodel.base_models import InputFormat
|
|
from docling.datamodel.pipeline_options import (
|
|
VlmPipelineOptions,
|
|
)
|
|
from docling.datamodel.pipeline_options_vlm_model import InferenceFramework
|
|
from docling.document_converter import DocumentConverter, PdfFormatOption
|
|
from docling.pipeline.vlm_pipeline import VlmPipeline
|
|
|
|
|
|
def convert(sources: list[Path], converter: DocumentConverter):
|
|
model_id = pipeline_options.vlm_options.repo_id.replace("/", "_")
|
|
framework = pipeline_options.vlm_options.inference_framework
|
|
for source in sources:
|
|
print("================================================")
|
|
print("Processing...")
|
|
print(f"Source: {source}")
|
|
print("---")
|
|
print(f"Model: {model_id}")
|
|
print(f"Framework: {framework}")
|
|
print("================================================")
|
|
print("")
|
|
|
|
res = converter.convert(source)
|
|
|
|
print("")
|
|
|
|
fname = f"{res.input.file.stem}-{model_id}-{framework}"
|
|
|
|
inference_time = 0.0
|
|
for i, page in enumerate(res.pages):
|
|
inference_time += page.predictions.vlm_response.generation_time
|
|
print("")
|
|
print(
|
|
f" ---------- Predicted page {i} in {pipeline_options.vlm_options.response_format} in {page.predictions.vlm_response.generation_time} [sec]:"
|
|
)
|
|
print(page.predictions.vlm_response.text)
|
|
print(" ---------- ")
|
|
|
|
print("===== Final output of the converted document =======")
|
|
|
|
with (out_path / f"{fname}.json").open("w") as fp:
|
|
fp.write(json.dumps(res.document.export_to_dict()))
|
|
|
|
res.document.save_as_json(
|
|
out_path / f"{fname}.json",
|
|
image_mode=ImageRefMode.PLACEHOLDER,
|
|
)
|
|
print(f" => produced {out_path / fname}.json")
|
|
|
|
res.document.save_as_markdown(
|
|
out_path / f"{fname}.md",
|
|
image_mode=ImageRefMode.PLACEHOLDER,
|
|
)
|
|
print(f" => produced {out_path / fname}.md")
|
|
|
|
res.document.save_as_html(
|
|
out_path / f"{fname}.html",
|
|
image_mode=ImageRefMode.EMBEDDED,
|
|
labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE],
|
|
split_page_view=True,
|
|
)
|
|
print(f" => produced {out_path / fname}.html")
|
|
|
|
pg_num = res.document.num_pages()
|
|
print("")
|
|
print(
|
|
f"Total document prediction time: {inference_time:.2f} seconds, pages: {pg_num}"
|
|
)
|
|
print("====================================================")
|
|
|
|
return [
|
|
source,
|
|
model_id,
|
|
str(framework),
|
|
pg_num,
|
|
inference_time,
|
|
]
|
|
|
|
|
|
if __name__ == "__main__":
|
|
sources = [
|
|
"tests/data/pdf/2305.03393v1-pg9.pdf",
|
|
]
|
|
|
|
out_path = Path("scratch")
|
|
out_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
## Use VlmPipeline
|
|
pipeline_options = VlmPipelineOptions()
|
|
pipeline_options.generate_page_images = True
|
|
|
|
## On GPU systems, enable flash_attention_2 with CUDA:
|
|
# pipeline_options.accelerator_options.device = AcceleratorDevice.CUDA
|
|
# pipeline_options.accelerator_options.cuda_use_flash_attention2 = True
|
|
|
|
vlm_models = [
|
|
## DocTags / SmolDocling models
|
|
vlm_model_specs.SMOLDOCLING_MLX,
|
|
vlm_model_specs.SMOLDOCLING_TRANSFORMERS,
|
|
## Markdown models (using MLX framework)
|
|
vlm_model_specs.QWEN25_VL_3B_MLX,
|
|
vlm_model_specs.PIXTRAL_12B_MLX,
|
|
vlm_model_specs.GEMMA3_12B_MLX,
|
|
## Markdown models (using Transformers framework)
|
|
vlm_model_specs.GRANITE_VISION_TRANSFORMERS,
|
|
vlm_model_specs.PHI4_TRANSFORMERS,
|
|
vlm_model_specs.PIXTRAL_12B_TRANSFORMERS,
|
|
]
|
|
|
|
# Remove MLX models if not on Mac
|
|
if sys.platform != "darwin":
|
|
vlm_models = [
|
|
m for m in vlm_models if m.inference_framework != InferenceFramework.MLX
|
|
]
|
|
|
|
rows = []
|
|
for vlm_options in vlm_models:
|
|
pipeline_options.vlm_options = vlm_options
|
|
|
|
## Set up pipeline for PDF or image inputs
|
|
converter = DocumentConverter(
|
|
format_options={
|
|
InputFormat.PDF: PdfFormatOption(
|
|
pipeline_cls=VlmPipeline,
|
|
pipeline_options=pipeline_options,
|
|
),
|
|
InputFormat.IMAGE: PdfFormatOption(
|
|
pipeline_cls=VlmPipeline,
|
|
pipeline_options=pipeline_options,
|
|
),
|
|
},
|
|
)
|
|
|
|
row = convert(sources=sources, converter=converter)
|
|
rows.append(row)
|
|
|
|
print(
|
|
tabulate(
|
|
rows, headers=["source", "model_id", "framework", "num_pages", "time"]
|
|
)
|
|
)
|
|
|
|
print("see if memory gets released ...")
|
|
time.sleep(10)
|