docling/docs/examples/vlm_pipeline_api_model.py
Peter W. J. Staar cfdf4cea25
feat: new vlm-models support (#1570)
* feat: adding new vlm-models support

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixed the transformers

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* got microsoft/Phi-4-multimodal-instruct to work

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* working on vlm's

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* refactoring the VLM part

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* all working, now serious refacgtoring necessary

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* refactoring the download_model

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added the formulate_prompt

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* pixtral 12b runs via MLX and native transformers

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added the VlmPredictionToken

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* refactoring minimal_vlm_pipeline

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixed the MyPy

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added pipeline_model_specializations file

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* need to get Phi4 working again ...

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* finalising last points for vlms support

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixed the pipeline for Phi4

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* streamlining all code

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* reformatted the code

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixing the tests

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added the html backend to the VLM pipeline

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixed the static load_from_doctags

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* restore stable imports

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* use AutoModelForVision2Seq for Pixtral and review example (including rename)

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* remove unused value

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* refactor instances of VLM models

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* skip compare example in CI

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* use lowercase and uppercase only

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add new minimal_vlm example and refactor pipeline_options_vlm_model for cleaner import

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* rename pipeline_vlm_model_spec

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* move more argument to options and simplify model init

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add supported_devices

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* remove not-needed function

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* exclude minimal_vlm

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* missing file

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add message for transformers version

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* rename to specs

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* use module import and remove MLX from non-darwin

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* remove hf_vlm_model and add extra_generation_args

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* use single HF VLM model class

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* remove torch type

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add docs for vision models

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

---------

Signed-off-by: Peter Staar <taa@zurich.ibm.com>
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
2025-06-02 17:01:06 +02:00

110 lines
3.4 KiB
Python
Vendored

import logging
import os
from pathlib import Path
import requests
from dotenv import load_dotenv
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import (
VlmPipelineOptions,
)
from docling.datamodel.pipeline_options_vlm_model import ApiVlmOptions, ResponseFormat
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.vlm_pipeline import VlmPipeline
def ollama_vlm_options(model: str, prompt: str):
options = ApiVlmOptions(
url="http://localhost:11434/v1/chat/completions", # the default Ollama endpoint
params=dict(
model=model,
),
prompt=prompt,
timeout=90,
scale=1.0,
response_format=ResponseFormat.MARKDOWN,
)
return options
def watsonx_vlm_options(model: str, prompt: str):
load_dotenv()
api_key = os.environ.get("WX_API_KEY")
project_id = os.environ.get("WX_PROJECT_ID")
def _get_iam_access_token(api_key: str) -> str:
res = requests.post(
url="https://iam.cloud.ibm.com/identity/token",
headers={
"Content-Type": "application/x-www-form-urlencoded",
},
data=f"grant_type=urn:ibm:params:oauth:grant-type:apikey&apikey={api_key}",
)
res.raise_for_status()
api_out = res.json()
print(f"{api_out=}")
return api_out["access_token"]
options = ApiVlmOptions(
url="https://us-south.ml.cloud.ibm.com/ml/v1/text/chat?version=2023-05-29",
params=dict(
model_id=model,
project_id=project_id,
parameters=dict(
max_new_tokens=400,
),
),
headers={
"Authorization": "Bearer " + _get_iam_access_token(api_key=api_key),
},
prompt=prompt,
timeout=60,
response_format=ResponseFormat.MARKDOWN,
)
return options
def main():
logging.basicConfig(level=logging.INFO)
# input_doc_path = Path("./tests/data/pdf/2206.01062.pdf")
input_doc_path = Path("./tests/data/pdf/2305.03393v1-pg9.pdf")
pipeline_options = VlmPipelineOptions(
enable_remote_services=True # <-- this is required!
)
# The ApiVlmOptions() allows to interface with APIs supporting
# the multi-modal chat interface. Here follow a few example on how to configure those.
# One possibility is self-hosting model, e.g. via Ollama.
# Example using the Granite Vision model: (uncomment the following lines)
pipeline_options.vlm_options = ollama_vlm_options(
model="granite3.2-vision:2b",
prompt="OCR the full page to markdown.",
)
# Another possibility is using online services, e.g. watsonx.ai.
# Using requires setting the env variables WX_API_KEY and WX_PROJECT_ID.
# Uncomment the following line for this option:
# pipeline_options.vlm_options = watsonx_vlm_options(
# model="ibm/granite-vision-3-2-2b", prompt="OCR the full page to markdown."
# )
# Create the DocumentConverter and launch the conversion.
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_options=pipeline_options,
pipeline_cls=VlmPipeline,
)
}
)
result = doc_converter.convert(input_doc_path)
print(result.document.export_to_markdown())
if __name__ == "__main__":
main()