mirror of
https://github.com/docling-project/docling.git
synced 2025-06-27 05:20:05 +00:00

* add Github Actions Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * apply styling Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * Update .github/actions/setup-poetry/action.yml Co-authored-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com> Signed-off-by: Michele Dolfi <97102151+dolfim-ibm@users.noreply.github.com> * add semantic-release config Signed-off-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com> --------- Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> Signed-off-by: Michele Dolfi <97102151+dolfim-ibm@users.noreply.github.com> Signed-off-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com> Co-authored-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com>
247 lines
6.0 KiB
Python
247 lines
6.0 KiB
Python
from enum import Enum, auto
|
|
from io import BytesIO
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
from PIL.Image import Image
|
|
from pydantic import BaseModel, ConfigDict, model_validator
|
|
|
|
from docling.backend.abstract_backend import PdfPageBackend
|
|
|
|
|
|
class ConversionStatus(str, Enum):
|
|
PENDING = auto()
|
|
STARTED = auto()
|
|
FAILURE = auto()
|
|
SUCCESS = auto()
|
|
SUCCESS_WITH_ERRORS = auto()
|
|
|
|
|
|
class DocInputType(str, Enum):
|
|
PATH = auto()
|
|
STREAM = auto()
|
|
|
|
|
|
class CoordOrigin(str, Enum):
|
|
TOPLEFT = auto()
|
|
BOTTOMLEFT = auto()
|
|
|
|
|
|
class PageSize(BaseModel):
|
|
width: float = 0.0
|
|
height: float = 0.0
|
|
|
|
|
|
class BoundingBox(BaseModel):
|
|
l: float # left
|
|
t: float # top
|
|
r: float # right
|
|
b: float # bottom
|
|
|
|
coord_origin: CoordOrigin = CoordOrigin.TOPLEFT
|
|
|
|
@property
|
|
def width(self):
|
|
return self.r - self.l
|
|
|
|
@property
|
|
def height(self):
|
|
return abs(self.t - self.b)
|
|
|
|
def as_tuple(self):
|
|
if self.coord_origin == CoordOrigin.TOPLEFT:
|
|
return (self.l, self.t, self.r, self.b)
|
|
elif self.coord_origin == CoordOrigin.BOTTOMLEFT:
|
|
return (self.l, self.b, self.r, self.t)
|
|
|
|
@classmethod
|
|
def from_tuple(cls, coord: Tuple[float], origin: CoordOrigin):
|
|
if origin == CoordOrigin.TOPLEFT:
|
|
return BoundingBox(
|
|
l=coord[0], t=coord[1], r=coord[2], b=coord[3], coord_origin=origin
|
|
)
|
|
elif origin == CoordOrigin.BOTTOMLEFT:
|
|
return BoundingBox(
|
|
l=coord[0], b=coord[1], r=coord[2], t=coord[3], coord_origin=origin
|
|
)
|
|
|
|
def area(self) -> float:
|
|
return (self.r - self.l) * (self.b - self.t)
|
|
|
|
def intersection_area_with(self, other: "BoundingBox") -> float:
|
|
# Calculate intersection coordinates
|
|
left = max(self.l, other.l)
|
|
top = max(self.t, other.t)
|
|
right = min(self.r, other.r)
|
|
bottom = min(self.b, other.b)
|
|
|
|
# Calculate intersection dimensions
|
|
width = right - left
|
|
height = bottom - top
|
|
|
|
# If the bounding boxes do not overlap, width or height will be negative
|
|
if width <= 0 or height <= 0:
|
|
return 0.0
|
|
|
|
return width * height
|
|
|
|
def to_bottom_left_origin(self, page_height) -> "BoundingBox":
|
|
if self.coord_origin == CoordOrigin.BOTTOMLEFT:
|
|
return self
|
|
elif self.coord_origin == CoordOrigin.TOPLEFT:
|
|
return BoundingBox(
|
|
l=self.l,
|
|
r=self.r,
|
|
t=page_height - self.t,
|
|
b=page_height - self.b,
|
|
coord_origin=CoordOrigin.BOTTOMLEFT,
|
|
)
|
|
|
|
def to_top_left_origin(self, page_height):
|
|
if self.coord_origin == CoordOrigin.TOPLEFT:
|
|
return self
|
|
elif self.coord_origin == CoordOrigin.BOTTOMLEFT:
|
|
return BoundingBox(
|
|
l=self.l,
|
|
r=self.r,
|
|
t=page_height - self.t, # self.b
|
|
b=page_height - self.b, # self.t
|
|
coord_origin=CoordOrigin.TOPLEFT,
|
|
)
|
|
|
|
|
|
class Cell(BaseModel):
|
|
id: int
|
|
text: str
|
|
bbox: BoundingBox
|
|
|
|
|
|
class OcrCell(Cell):
|
|
confidence: float
|
|
|
|
|
|
class Cluster(BaseModel):
|
|
id: int
|
|
label: str
|
|
bbox: BoundingBox
|
|
confidence: float = 1.0
|
|
cells: List[Cell] = []
|
|
|
|
|
|
class BasePageElement(BaseModel):
|
|
label: str
|
|
id: int
|
|
page_no: int
|
|
cluster: Cluster
|
|
text: Optional[str] = None
|
|
|
|
|
|
class LayoutPrediction(BaseModel):
|
|
clusters: List[Cluster] = []
|
|
|
|
|
|
class TableCell(BaseModel):
|
|
bbox: BoundingBox
|
|
row_span: int
|
|
col_span: int
|
|
start_row_offset_idx: int
|
|
end_row_offset_idx: int
|
|
start_col_offset_idx: int
|
|
end_col_offset_idx: int
|
|
text: str
|
|
column_header: bool = False
|
|
row_header: bool = False
|
|
row_section: bool = False
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def from_dict_format(cls, data: Any) -> Any:
|
|
if isinstance(data, Dict):
|
|
text = data["bbox"].get("token", "")
|
|
if not len(text):
|
|
text_cells = data.pop("text_cell_bboxes", None)
|
|
if text_cells:
|
|
for el in text_cells:
|
|
text += el["token"] + " "
|
|
|
|
text = text.strip()
|
|
data["text"] = text
|
|
|
|
return data
|
|
|
|
|
|
class TableElement(BasePageElement):
|
|
otsl_seq: List[str]
|
|
num_rows: int = 0
|
|
num_cols: int = 0
|
|
table_cells: List[TableCell]
|
|
|
|
|
|
class TableStructurePrediction(BaseModel):
|
|
table_map: Dict[int, TableElement] = {}
|
|
|
|
|
|
class TextElement(BasePageElement): ...
|
|
|
|
|
|
class FigureData(BaseModel):
|
|
pass
|
|
|
|
|
|
class FigureElement(BasePageElement):
|
|
data: Optional[FigureData] = None
|
|
provenance: Optional[str] = None
|
|
predicted_class: Optional[str] = None
|
|
confidence: Optional[float] = None
|
|
|
|
|
|
class FigureClassificationPrediction(BaseModel):
|
|
figure_count: int = 0
|
|
figure_map: Dict[int, FigureElement] = {}
|
|
|
|
|
|
class EquationPrediction(BaseModel):
|
|
equation_count: int = 0
|
|
equation_map: Dict[int, TextElement] = {}
|
|
|
|
|
|
class PagePredictions(BaseModel):
|
|
layout: LayoutPrediction = None
|
|
tablestructure: TableStructurePrediction = None
|
|
figures_classification: FigureClassificationPrediction = None
|
|
equations_prediction: EquationPrediction = None
|
|
|
|
|
|
PageElement = Union[TextElement, TableElement, FigureElement]
|
|
|
|
|
|
class AssembledUnit(BaseModel):
|
|
elements: List[PageElement]
|
|
body: List[PageElement]
|
|
headers: List[PageElement]
|
|
|
|
|
|
class Page(BaseModel):
|
|
model_config = ConfigDict(arbitrary_types_allowed=True)
|
|
|
|
page_no: int
|
|
page_hash: str = None
|
|
size: PageSize = None
|
|
image: Image = None
|
|
cells: List[Cell] = None
|
|
predictions: PagePredictions = PagePredictions()
|
|
assembled: AssembledUnit = None
|
|
|
|
_backend: PdfPageBackend = None # Internal PDF backend
|
|
|
|
|
|
class DocumentStream(BaseModel):
|
|
model_config = ConfigDict(arbitrary_types_allowed=True)
|
|
|
|
filename: str
|
|
stream: BytesIO
|
|
|
|
|
|
class PipelineOptions(BaseModel):
|
|
do_table_structure: bool = True
|
|
do_ocr: bool = False
|