docling/docs/examples/minimal_asr_pipeline.py
Peter W. J. Staar f3ae3029b8
docs: update readme and add ASR example (#1836)
* updated the README

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added minimal_asr_pipeline

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* Updated README and added ASR example

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* Updated docs.index.md

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* updated CI and mkdocs

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added link tp existing audio file

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added link tp existing audio file

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* reformatting

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

---------

Signed-off-by: Peter Staar <taa@zurich.ibm.com>
2025-06-23 18:55:16 +02:00

57 lines
1.8 KiB
Python
Vendored

from pathlib import Path
from docling_core.types.doc import DoclingDocument
from docling.datamodel import asr_model_specs
from docling.datamodel.base_models import ConversionStatus, InputFormat
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import AsrPipelineOptions
from docling.document_converter import AudioFormatOption, DocumentConverter
from docling.pipeline.asr_pipeline import AsrPipeline
def get_asr_converter():
"""Create a DocumentConverter configured for ASR with whisper_turbo model."""
pipeline_options = AsrPipelineOptions()
pipeline_options.asr_options = asr_model_specs.WHISPER_TURBO
converter = DocumentConverter(
format_options={
InputFormat.AUDIO: AudioFormatOption(
pipeline_cls=AsrPipeline,
pipeline_options=pipeline_options,
)
}
)
return converter
def asr_pipeline_conversion(audio_path: Path) -> DoclingDocument:
"""ASR pipeline conversion using whisper_turbo"""
# Check if the test audio file exists
assert audio_path.exists(), f"Test audio file not found: {audio_path}"
converter = get_asr_converter()
# Convert the audio file
result: ConversionResult = converter.convert(audio_path)
# Verify conversion was successful
assert result.status == ConversionStatus.SUCCESS, (
f"Conversion failed with status: {result.status}"
)
return result.document
if __name__ == "__main__":
audio_path = Path("tests/data/audio/sample_10s.mp3")
doc = asr_pipeline_conversion(audio_path=audio_path)
print(doc.export_to_markdown())
# Expected output:
#
# [time: 0.0-4.0] Shakespeare on Scenery by Oscar Wilde
#
# [time: 5.28-9.96] This is a LibriVox recording. All LibriVox recordings are in the public domain.