mirror of
https://github.com/docling-project/docling.git
synced 2025-06-27 05:20:05 +00:00

* updated the README Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added minimal_asr_pipeline Signed-off-by: Peter Staar <taa@zurich.ibm.com> * Updated README and added ASR example Signed-off-by: Peter Staar <taa@zurich.ibm.com> * Updated docs.index.md Signed-off-by: Peter Staar <taa@zurich.ibm.com> * updated CI and mkdocs Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added link tp existing audio file Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added link tp existing audio file Signed-off-by: Peter Staar <taa@zurich.ibm.com> * reformatting Signed-off-by: Peter Staar <taa@zurich.ibm.com> --------- Signed-off-by: Peter Staar <taa@zurich.ibm.com>
57 lines
1.8 KiB
Python
Vendored
57 lines
1.8 KiB
Python
Vendored
from pathlib import Path
|
|
|
|
from docling_core.types.doc import DoclingDocument
|
|
|
|
from docling.datamodel import asr_model_specs
|
|
from docling.datamodel.base_models import ConversionStatus, InputFormat
|
|
from docling.datamodel.document import ConversionResult
|
|
from docling.datamodel.pipeline_options import AsrPipelineOptions
|
|
from docling.document_converter import AudioFormatOption, DocumentConverter
|
|
from docling.pipeline.asr_pipeline import AsrPipeline
|
|
|
|
|
|
def get_asr_converter():
|
|
"""Create a DocumentConverter configured for ASR with whisper_turbo model."""
|
|
pipeline_options = AsrPipelineOptions()
|
|
pipeline_options.asr_options = asr_model_specs.WHISPER_TURBO
|
|
|
|
converter = DocumentConverter(
|
|
format_options={
|
|
InputFormat.AUDIO: AudioFormatOption(
|
|
pipeline_cls=AsrPipeline,
|
|
pipeline_options=pipeline_options,
|
|
)
|
|
}
|
|
)
|
|
return converter
|
|
|
|
|
|
def asr_pipeline_conversion(audio_path: Path) -> DoclingDocument:
|
|
"""ASR pipeline conversion using whisper_turbo"""
|
|
# Check if the test audio file exists
|
|
assert audio_path.exists(), f"Test audio file not found: {audio_path}"
|
|
|
|
converter = get_asr_converter()
|
|
|
|
# Convert the audio file
|
|
result: ConversionResult = converter.convert(audio_path)
|
|
|
|
# Verify conversion was successful
|
|
assert result.status == ConversionStatus.SUCCESS, (
|
|
f"Conversion failed with status: {result.status}"
|
|
)
|
|
return result.document
|
|
|
|
|
|
if __name__ == "__main__":
|
|
audio_path = Path("tests/data/audio/sample_10s.mp3")
|
|
|
|
doc = asr_pipeline_conversion(audio_path=audio_path)
|
|
print(doc.export_to_markdown())
|
|
|
|
# Expected output:
|
|
#
|
|
# [time: 0.0-4.0] Shakespeare on Scenery by Oscar Wilde
|
|
#
|
|
# [time: 5.28-9.96] This is a LibriVox recording. All LibriVox recordings are in the public domain.
|