mirror of
https://github.com/mendableai/firecrawl.git
synced 2025-08-04 06:49:31 +00:00
198 lines
6.1 KiB
TypeScript
198 lines
6.1 KiB
TypeScript
![]() |
import { Request, Response } from "express";
|
||
|
import { Logger } from "../../lib/logger";
|
||
|
import {
|
||
|
Document,
|
||
|
legacyDocumentConverter,
|
||
|
legacyExtractorOptions,
|
||
|
legacyScrapeOptions,
|
||
|
RequestWithAuth,
|
||
|
ExtractRequest,
|
||
|
extractRequestSchema,
|
||
|
ExtractResponse,
|
||
|
legacyCrawlerOptions,
|
||
|
MapDocument,
|
||
|
} from "./types";
|
||
|
import { billTeam } from "../../services/billing/credit_billing";
|
||
|
import { v4 as uuidv4 } from "uuid";
|
||
|
import { numTokensFromString } from "../../lib/LLM-extraction/helpers";
|
||
|
import { addScrapeJob, waitForJob } from "../../services/queue-jobs";
|
||
|
import { logJob } from "../../services/logging/log_job";
|
||
|
import { getJobPriority } from "../../lib/job-priority";
|
||
|
import { PlanType } from "../../types";
|
||
|
import { getMapResults } from "./map";
|
||
|
import { rerankDocuments } from "../../lib/extract/reranker";
|
||
|
import { generateBasicCompletion } from "../../lib/extract/completions";
|
||
|
|
||
|
|
||
|
|
||
|
export async function extractController(
|
||
|
req: RequestWithAuth<{}, ExtractResponse, ExtractRequest>,
|
||
|
res: Response<ExtractResponse>
|
||
|
) {
|
||
|
req.body = extractRequestSchema.parse(req.body);
|
||
|
let earlyReturn = false;
|
||
|
|
||
|
const origin = req.body.origin;
|
||
|
const timeout = req.body.timeout;
|
||
|
// const pageOptions = legacyScrapeOptions(req.body);
|
||
|
// const extractorOptions = req.body.extract ? legacyExtractorOptions(req.body.extract) : undefined;
|
||
|
const jobId = uuidv4();
|
||
|
|
||
|
const startTime = new Date().getTime();
|
||
|
const jobPriority = await getJobPriority({
|
||
|
plan: req.auth.plan as PlanType,
|
||
|
team_id: req.auth.team_id,
|
||
|
basePriority: 10,
|
||
|
});
|
||
|
|
||
|
const urls = req.body.urls;
|
||
|
const mappedDocuments: MapDocument[] = [];
|
||
|
|
||
|
const prompt = req.body.prompt;
|
||
|
const keywords = await generateBasicCompletion(`If the user's prompt is: "${prompt}", what are the most important keywords besides the extraction task? Output only the keywords, separated by commas.`);
|
||
|
|
||
|
for (const url of urls) {
|
||
|
if (url.endsWith("/*")) {
|
||
|
const mapResults = await getMapResults({
|
||
|
url: url.slice(0, -2),
|
||
|
search: req.body.prompt,
|
||
|
limit: 100,
|
||
|
ignoreSitemap: true,
|
||
|
includeSubdomains: false,
|
||
|
crawlerOptions: {},
|
||
|
teamId: req.auth.team_id,
|
||
|
plan: req.auth.plan,
|
||
|
origin: req.body.origin,
|
||
|
subId: req.acuc?.sub_id,
|
||
|
includeMetadata: true
|
||
|
});
|
||
|
// top 3 links
|
||
|
const top3Links = (mapResults.links as MapDocument[]).slice(0, 3);
|
||
|
console.log(top3Links);
|
||
|
// console.log(top3Links);
|
||
|
mappedDocuments.push(...(mapResults.links as MapDocument[]));
|
||
|
// transform mappedUrls to just documents
|
||
|
// we quickly rerank
|
||
|
const rerank = await rerankDocuments(mappedDocuments.map(x => `URL: ${x.url}\nTITLE: ${x.title}\nDESCRIPTION: ${x.description}`), "What URLs are most relevant to the following prompt: " + req.body.prompt.toLocaleLowerCase().replace("extract", " ").replace("extract ", " "));
|
||
|
console.log(rerank);
|
||
|
} else {
|
||
|
mappedDocuments.push({ url });
|
||
|
}
|
||
|
}
|
||
|
|
||
|
req.body.urls = mappedDocuments.map(x => x.url);
|
||
|
|
||
|
|
||
|
|
||
|
// const job = await addScrapeJob(
|
||
|
// {
|
||
|
// url: req.body.url,
|
||
|
// mode: "single_urls",
|
||
|
// crawlerOptions: {},
|
||
|
// team_id: req.auth.team_id,
|
||
|
// plan: req.auth.plan,
|
||
|
// pageOptions,
|
||
|
// extractorOptions,
|
||
|
// origin: req.body.origin,
|
||
|
// is_scrape: true,
|
||
|
// },
|
||
|
// {},
|
||
|
// jobId,
|
||
|
// jobPriority
|
||
|
// );
|
||
|
|
||
|
// const totalWait = (req.body.waitFor ?? 0) + (req.body.actions ?? []).reduce((a,x) => (x.type === "wait" ? x.milliseconds : 0) + a, 0);
|
||
|
|
||
|
// let doc: any | undefined;
|
||
|
// try {
|
||
|
// doc = (await waitForJob(job.id, timeout + totalWait))[0];
|
||
|
// } catch (e) {
|
||
|
// Logger.error(`Error in scrapeController: ${e}`);
|
||
|
// if (e instanceof Error && e.message.startsWith("Job wait")) {
|
||
|
// return res.status(408).json({
|
||
|
// success: false,
|
||
|
// error: "Request timed out",
|
||
|
// });
|
||
|
// } else {
|
||
|
// return res.status(500).json({
|
||
|
// success: false,
|
||
|
// error: `(Internal server error) - ${e && e?.message ? e.message : e} ${
|
||
|
// extractorOptions && extractorOptions.mode !== "markdown"
|
||
|
// ? " - Could be due to LLM parsing issues"
|
||
|
// : ""
|
||
|
// }`,
|
||
|
// });
|
||
|
// }
|
||
|
// }
|
||
|
|
||
|
// await job.remove();
|
||
|
|
||
|
// if (!doc) {
|
||
|
// console.error("!!! PANIC DOC IS", doc, job);
|
||
|
// return res.status(200).json({
|
||
|
// success: true,
|
||
|
// warning: "No page found",
|
||
|
// data: doc,
|
||
|
// });
|
||
|
// }
|
||
|
|
||
|
// delete doc.index;
|
||
|
// delete doc.provider;
|
||
|
|
||
|
// const endTime = new Date().getTime();
|
||
|
// const timeTakenInSeconds = (endTime - startTime) / 1000;
|
||
|
// const numTokens =
|
||
|
// doc && doc.markdown
|
||
|
// ? numTokensFromString(doc.markdown, "gpt-3.5-turbo")
|
||
|
// : 0;
|
||
|
|
||
|
// let creditsToBeBilled = 1; // Assuming 1 credit per document
|
||
|
// if (earlyReturn) {
|
||
|
// // Don't bill if we're early returning
|
||
|
// return;
|
||
|
// }
|
||
|
// if(req.body.extract && req.body.formats.includes("extract")) {
|
||
|
// creditsToBeBilled = 5;
|
||
|
// }
|
||
|
|
||
|
// billTeam(req.auth.team_id, req.acuc?.sub_id, creditsToBeBilled).catch(error => {
|
||
|
// Logger.error(`Failed to bill team ${req.auth.team_id} for ${creditsToBeBilled} credits: ${error}`);
|
||
|
// // Optionally, you could notify an admin or add to a retry queue here
|
||
|
// });
|
||
|
|
||
|
// if (!pageOptions || !pageOptions.includeRawHtml) {
|
||
|
// if (doc && doc.rawHtml) {
|
||
|
// delete doc.rawHtml;
|
||
|
// }
|
||
|
// }
|
||
|
|
||
|
// if(pageOptions && pageOptions.includeExtract) {
|
||
|
// if(!pageOptions.includeMarkdown && doc && doc.markdown) {
|
||
|
// delete doc.markdown;
|
||
|
// }
|
||
|
// }
|
||
|
|
||
|
// logJob({
|
||
|
// job_id: jobId,
|
||
|
// success: true,
|
||
|
// message: "Scrape completed",
|
||
|
// num_docs: 1,
|
||
|
// docs: [doc],
|
||
|
// time_taken: timeTakenInSeconds,
|
||
|
// team_id: req.auth.team_id,
|
||
|
// mode: "scrape",
|
||
|
// url: req.body.url,
|
||
|
// crawlerOptions: {},
|
||
|
// pageOptions: pageOptions,
|
||
|
// origin: origin,
|
||
|
// extractor_options: extractorOptions,
|
||
|
// num_tokens: numTokens,
|
||
|
// });
|
||
|
|
||
|
return res.status(200).json({
|
||
|
success: true,
|
||
|
data: null,
|
||
|
scrape_id: origin?.includes("website") ? jobId : undefined,
|
||
|
});
|
||
|
}
|