Merge pull request #1487 from aparupganguly/feature/o3-crawler

Add examples/o3 Web Crawler
This commit is contained in:
Eric Ciarla 2025-04-24 13:46:10 -04:00 committed by GitHub
commit 59e1343ed4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 375 additions and 0 deletions

View File

@ -0,0 +1,3 @@
# API Keys
FIRECRAWL_API_KEY=your_firecrawl_api_key_here
OPENAI_API_KEY=your_openai_api_key_here

70
examples/o3-web-crawler/.gitignore vendored Normal file
View File

@ -0,0 +1,70 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/
.pytest_cache/
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# VS Code settings
.vscode/
# Jupyter Notebook
.ipynb_checkpoints
# MacOS
.DS_Store
# Project specific
*.log

View File

@ -0,0 +1,59 @@
# O3 Web Crawler
A Python tool that uses OpenAI's o3 model and Firecrawl to intelligently crawl websites based on specific objectives.
## Features
- Maps website URLs to identify the most relevant pages for your objective
- Uses OpenAI's o3 model to analyze and rank pages by relevance
- Extracts specific information from web pages based on your objective
- Provides detailed, color-coded terminal output to track progress
## Prerequisites
- Python 3.6+
- Firecrawl API key
- OpenAI API key
## Installation
1. Clone this repository
2. Install dependencies:
```
pip install -r requirements.txt
```
3. Create a `.env` file based on `.env.example` with your API keys
## Usage
Run the script:
```
python o3-web-crawler.py
```
You will be prompted to:
1. Enter a website URL to crawl
2. Specify your objective (what information you want to extract)
The script will:
- Analyze your objective to determine optimal search parameters
- Map the website to find relevant pages
- Rank pages by relevance to your objective
- Scrape and analyze top pages to extract the requested information
- Display results in JSON format
## Example
```
Enter the website to crawl: https://example.com
Enter your objective: Find the company's contact information and headquarters location
```
The script will intelligently crawl the website and extract the requested information.
## License
MIT

View File

@ -0,0 +1,240 @@
import os
from firecrawl import FirecrawlApp
import json
from dotenv import load_dotenv
from openai import OpenAI
# ANSI color codes
class Colors:
CYAN = '\033[96m'
YELLOW = '\033[93m'
GREEN = '\033[92m'
RED = '\033[91m'
MAGENTA = '\033[95m'
BLUE = '\033[94m'
RESET = '\033[0m'
# Load environment variables
load_dotenv()
firecrawl_api_key = os.getenv("FIRECRAWL_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY")
# Initialize the FirecrawlApp and OpenAI client
app = FirecrawlApp(api_key=firecrawl_api_key)
client = OpenAI(api_key=openai_api_key)
# Find the page that most likely contains the objective
def find_relevant_page_via_map(objective, url, app, client):
try:
print(f"{Colors.CYAN}Understood. The objective is: {objective}{Colors.RESET}")
print(f"{Colors.CYAN}Initiating search on the website: {url}{Colors.RESET}")
map_prompt = f"""
The map function generates a list of URLs from a website and it accepts a search parameter. Based on the objective of: {objective}, come up with a 1-2 word search parameter that will help us find the information we need. Only respond with 1-2 words nothing else.
"""
print(f"{Colors.YELLOW}Analyzing objective to determine optimal search parameter...{Colors.RESET}")
completion = client.chat.completions.create(
model="o3",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": map_prompt
}
]
}
]
)
map_search_parameter = completion.choices[0].message.content
print(f"{Colors.GREEN}Optimal search parameter identified: {map_search_parameter}{Colors.RESET}")
print(f"{Colors.YELLOW}Mapping website using the identified search parameter...{Colors.RESET}")
map_website = app.map_url(url, params={"search": map_search_parameter})
print(f"{Colors.MAGENTA}Debug - Map response structure: {json.dumps(map_website, indent=2)}{Colors.RESET}")
print(f"{Colors.GREEN}Website mapping completed successfully.{Colors.RESET}")
# Handle the response based on its structure
if isinstance(map_website, dict):
links = map_website.get('urls', []) or map_website.get('links', [])
elif isinstance(map_website, str):
try:
parsed = json.loads(map_website)
links = parsed.get('urls', []) or parsed.get('links', [])
except json.JSONDecodeError:
links = []
else:
links = map_website if isinstance(map_website, list) else []
if not links:
print(f"{Colors.RED}No links found in map response.{Colors.RESET}")
return None
rank_prompt = f"""
Given this list of URLs and the objective: {objective}
Analyze each URL and rank the top 3 most relevant ones that are most likely to contain the information we need.
Return your response as a JSON array with exactly 3 objects, each containing:
- "url": the full URL
- "relevance_score": number between 0-100 indicating relevance to objective
- "reason": brief explanation of why this URL is relevant
Example output:
[
{{
"url": "https://example.com/about",
"relevance_score": 95,
"reason": "Main about page containing company information"
}},
{{
"url": "https://example.com/team",
"relevance_score": 80,
"reason": "Team page with leadership details"
}},
{{
"url": "https://example.com/contact",
"relevance_score": 70,
"reason": "Contact page with location information"
}}
]
URLs to analyze:
{json.dumps(links, indent=2)}
"""
print(f"{Colors.YELLOW}Ranking URLs by relevance to objective...{Colors.RESET}")
completion = client.chat.completions.create(
model="o3",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": rank_prompt
}
]
}
]
)
try:
ranked_results = json.loads(completion.choices[0].message.content)
links = [result["url"] for result in ranked_results]
# Print detailed ranking info
print(f"{Colors.CYAN}Top 3 ranked URLs:{Colors.RESET}")
for result in ranked_results:
print(f"{Colors.GREEN}URL: {result['url']}{Colors.RESET}")
print(f"{Colors.YELLOW}Relevance Score: {result['relevance_score']}{Colors.RESET}")
print(f"{Colors.BLUE}Reason: {result['reason']}{Colors.RESET}")
print("---")
if not links:
print(f"{Colors.RED}No relevant links identified.{Colors.RESET}")
return None
except (json.JSONDecodeError, KeyError) as e:
print(f"{Colors.RED}Error parsing ranked results: {str(e)}{Colors.RESET}")
return None
print(f"{Colors.GREEN}Located {len(links)} relevant links.{Colors.RESET}")
return links
except Exception as e:
print(f"{Colors.RED}Error encountered during relevant page identification: {str(e)}{Colors.RESET}")
return None
def find_objective_in_top_pages(map_website, objective, app, client):
try:
# Get top 3 links from the map result
if not map_website:
print(f"{Colors.RED}No links found to analyze.{Colors.RESET}")
return None
top_links = map_website[:3]
print(f"{Colors.CYAN}Proceeding to analyze top {len(top_links)} links: {top_links}{Colors.RESET}")
for link in top_links:
print(f"{Colors.YELLOW}Initiating scrape of page: {link}{Colors.RESET}")
# Scrape the page
scrape_result = app.scrape_url(link, params={'formats': ['markdown']})
print(f"{Colors.GREEN}Page scraping completed successfully.{Colors.RESET}")
check_prompt = f"""
Given the following scraped content and objective, determine if the objective is met.
If it is, extract the relevant information in a simple and concise JSON format. Use only the necessary fields and avoid nested structures if possible.
If the objective is not met with confidence, respond with 'Objective not met'.
Objective: {objective}
Scraped content: {scrape_result['markdown']}
Remember:
1. Only return JSON if you are confident the objective is fully met.
2. Keep the JSON structure as simple and flat as possible.
3. Do not include any explanations or markdown formatting in your response.
"""
completion = client.chat.completions.create(
model="o3",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": check_prompt
}
]
}
]
)
result = completion.choices[0].message.content
if result != "Objective not met":
print(f"{Colors.GREEN}Objective potentially fulfilled. Relevant information identified.{Colors.RESET}")
try:
return json.loads(result)
except json.JSONDecodeError:
print(f"{Colors.RED}Error in parsing response. Proceeding to next page...{Colors.RESET}")
else:
print(f"{Colors.YELLOW}Objective not met on this page. Proceeding to next link...{Colors.RESET}")
print(f"{Colors.RED}All available pages analyzed. Objective not fulfilled in examined content.{Colors.RESET}")
return None
except Exception as e:
print(f"{Colors.RED}Error encountered during page analysis: {str(e)}{Colors.RESET}")
return None
# Main function to execute the process
def main():
url = input(f"{Colors.BLUE}Enter the website to crawl : {Colors.RESET}")
objective = input(f"{Colors.BLUE}Enter your objective: {Colors.RESET}")
print(f"{Colors.YELLOW}Initiating web crawling process...{Colors.RESET}")
# Find the relevant page
map_website = find_relevant_page_via_map(objective, url, app, client)
if map_website:
print(f"{Colors.GREEN}Relevant pages identified. Proceeding with detailed analysis using o3...{Colors.RESET}")
# Find objective in top pages
result = find_objective_in_top_pages(map_website, objective, app, client)
if result:
print(f"{Colors.GREEN}Objective successfully fulfilled. Extracted information :{Colors.RESET}")
print(f"{Colors.MAGENTA}{json.dumps(result, indent=2)}{Colors.RESET}")
else:
print(f"{Colors.RED}Unable to fulfill the objective with the available content.{Colors.RESET}")
else:
print(f"{Colors.RED}No relevant pages identified. Consider refining the search parameters or trying a different website.{Colors.RESET}")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,3 @@
firecrawl>=0.1.0
openai>=1.0.0
python-dotenv>=0.19.0