mirror of
https://github.com/getzep/graphiti.git
synced 2025-06-27 02:00:02 +00:00
243 lines
9.4 KiB
Python
243 lines
9.4 KiB
Python
![]() |
"""
|
|||
|
Copyright 2025, Zep Software, Inc.
|
|||
|
|
|||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
you may not use this file except in compliance with the License.
|
|||
|
You may obtain a copy of the License at
|
|||
|
|
|||
|
http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
|
|||
|
Unless required by applicable law or agreed to in writing, software
|
|||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
See the License for the specific language governing permissions and
|
|||
|
limitations under the License.
|
|||
|
"""
|
|||
|
|
|||
|
import asyncio
|
|||
|
import json
|
|||
|
import logging
|
|||
|
import os
|
|||
|
from datetime import datetime, timezone
|
|||
|
from logging import INFO
|
|||
|
|
|||
|
from dotenv import load_dotenv
|
|||
|
|
|||
|
from graphiti_core import Graphiti
|
|||
|
from graphiti_core.nodes import EpisodeType
|
|||
|
from graphiti_core.search.search_config_recipes import NODE_HYBRID_SEARCH_RRF
|
|||
|
|
|||
|
#################################################
|
|||
|
# CONFIGURATION
|
|||
|
#################################################
|
|||
|
# Set up logging and environment variables for
|
|||
|
# connecting to Neo4j database
|
|||
|
#################################################
|
|||
|
|
|||
|
# Configure logging
|
|||
|
logging.basicConfig(
|
|||
|
level=INFO,
|
|||
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
|||
|
datefmt='%Y-%m-%d %H:%M:%S',
|
|||
|
)
|
|||
|
logger = logging.getLogger(__name__)
|
|||
|
|
|||
|
load_dotenv()
|
|||
|
|
|||
|
# Neo4j connection parameters
|
|||
|
# Make sure Neo4j Desktop is running with a local DBMS started
|
|||
|
neo4j_uri = os.environ.get('NEO4J_URI', 'bolt://localhost:7687')
|
|||
|
neo4j_user = os.environ.get('NEO4J_USER', 'neo4j')
|
|||
|
neo4j_password = os.environ.get('NEO4J_PASSWORD', 'password')
|
|||
|
|
|||
|
if not neo4j_uri or not neo4j_user or not neo4j_password:
|
|||
|
raise ValueError('NEO4J_URI, NEO4J_USER, and NEO4J_PASSWORD must be set')
|
|||
|
|
|||
|
|
|||
|
async def main():
|
|||
|
#################################################
|
|||
|
# INITIALIZATION
|
|||
|
#################################################
|
|||
|
# Connect to Neo4j and set up Graphiti indices
|
|||
|
# This is required before using other Graphiti
|
|||
|
# functionality
|
|||
|
#################################################
|
|||
|
|
|||
|
# Initialize Graphiti with Neo4j connection
|
|||
|
graphiti = Graphiti(neo4j_uri, neo4j_user, neo4j_password)
|
|||
|
|
|||
|
try:
|
|||
|
# Initialize the graph database with graphiti's indices. This only needs to be done once.
|
|||
|
await graphiti.build_indices_and_constraints()
|
|||
|
|
|||
|
#################################################
|
|||
|
# ADDING EPISODES
|
|||
|
#################################################
|
|||
|
# Episodes are the primary units of information
|
|||
|
# in Graphiti. They can be text or structured JSON
|
|||
|
# and are automatically processed to extract entities
|
|||
|
# and relationships.
|
|||
|
#################################################
|
|||
|
|
|||
|
# Example: Add Episodes
|
|||
|
# Episodes list containing both text and JSON episodes
|
|||
|
episodes = [
|
|||
|
{
|
|||
|
'content': 'Kamala Harris is the Attorney General of California. She was previously '
|
|||
|
'the district attorney for San Francisco.',
|
|||
|
'type': EpisodeType.text,
|
|||
|
'description': 'podcast transcript',
|
|||
|
},
|
|||
|
{
|
|||
|
'content': 'As AG, Harris was in office from January 3, 2011 – January 3, 2017',
|
|||
|
'type': EpisodeType.text,
|
|||
|
'description': 'podcast transcript',
|
|||
|
},
|
|||
|
{
|
|||
|
'content': {
|
|||
|
'name': 'Gavin Newsom',
|
|||
|
'position': 'Governor',
|
|||
|
'state': 'California',
|
|||
|
'previous_role': 'Lieutenant Governor',
|
|||
|
'previous_location': 'San Francisco',
|
|||
|
},
|
|||
|
'type': EpisodeType.json,
|
|||
|
'description': 'podcast metadata',
|
|||
|
},
|
|||
|
{
|
|||
|
'content': {
|
|||
|
'name': 'Gavin Newsom',
|
|||
|
'position': 'Governor',
|
|||
|
'term_start': 'January 7, 2019',
|
|||
|
'term_end': 'Present',
|
|||
|
},
|
|||
|
'type': EpisodeType.json,
|
|||
|
'description': 'podcast metadata',
|
|||
|
},
|
|||
|
]
|
|||
|
|
|||
|
# Add episodes to the graph
|
|||
|
for i, episode in enumerate(episodes):
|
|||
|
await graphiti.add_episode(
|
|||
|
name=f'Freakonomics Radio {i}',
|
|||
|
episode_body=episode['content']
|
|||
|
if isinstance(episode['content'], str)
|
|||
|
else json.dumps(episode['content']),
|
|||
|
source=episode['type'],
|
|||
|
source_description=episode['description'],
|
|||
|
reference_time=datetime.now(timezone.utc),
|
|||
|
)
|
|||
|
print(f'Added episode: Freakonomics Radio {i} ({episode["type"].value})')
|
|||
|
|
|||
|
#################################################
|
|||
|
# BASIC SEARCH
|
|||
|
#################################################
|
|||
|
# The simplest way to retrieve relationships (edges)
|
|||
|
# from Graphiti is using the search method, which
|
|||
|
# performs a hybrid search combining semantic
|
|||
|
# similarity and BM25 text retrieval.
|
|||
|
#################################################
|
|||
|
|
|||
|
# Perform a hybrid search combining semantic similarity and BM25 retrieval
|
|||
|
print("\nSearching for: 'Who was the California Attorney General?'")
|
|||
|
results = await graphiti.search('Who was the California Attorney General?')
|
|||
|
|
|||
|
# Print search results
|
|||
|
print('\nSearch Results:')
|
|||
|
for result in results:
|
|||
|
print(f'UUID: {result.uuid}')
|
|||
|
print(f'Fact: {result.fact}')
|
|||
|
if hasattr(result, 'valid_at') and result.valid_at:
|
|||
|
print(f'Valid from: {result.valid_at}')
|
|||
|
if hasattr(result, 'invalid_at') and result.invalid_at:
|
|||
|
print(f'Valid until: {result.invalid_at}')
|
|||
|
print('---')
|
|||
|
|
|||
|
#################################################
|
|||
|
# CENTER NODE SEARCH
|
|||
|
#################################################
|
|||
|
# For more contextually relevant results, you can
|
|||
|
# use a center node to rerank search results based
|
|||
|
# on their graph distance to a specific node
|
|||
|
#################################################
|
|||
|
|
|||
|
# Use the top search result's UUID as the center node for reranking
|
|||
|
if results and len(results) > 0:
|
|||
|
# Get the source node UUID from the top result
|
|||
|
center_node_uuid = results[0].source_node_uuid
|
|||
|
|
|||
|
print('\nReranking search results based on graph distance:')
|
|||
|
print(f'Using center node UUID: {center_node_uuid}')
|
|||
|
|
|||
|
reranked_results = await graphiti.search(
|
|||
|
'Who was the California Attorney General?', center_node_uuid=center_node_uuid
|
|||
|
)
|
|||
|
|
|||
|
# Print reranked search results
|
|||
|
print('\nReranked Search Results:')
|
|||
|
for result in reranked_results:
|
|||
|
print(f'UUID: {result.uuid}')
|
|||
|
print(f'Fact: {result.fact}')
|
|||
|
if hasattr(result, 'valid_at') and result.valid_at:
|
|||
|
print(f'Valid from: {result.valid_at}')
|
|||
|
if hasattr(result, 'invalid_at') and result.invalid_at:
|
|||
|
print(f'Valid until: {result.invalid_at}')
|
|||
|
print('---')
|
|||
|
else:
|
|||
|
print('No results found in the initial search to use as center node.')
|
|||
|
|
|||
|
#################################################
|
|||
|
# NODE SEARCH USING SEARCH RECIPES
|
|||
|
#################################################
|
|||
|
# Graphiti provides predefined search recipes
|
|||
|
# optimized for different search scenarios.
|
|||
|
# Here we use NODE_HYBRID_SEARCH_RRF for retrieving
|
|||
|
# nodes directly instead of edges.
|
|||
|
#################################################
|
|||
|
|
|||
|
# Example: Perform a node search using _search method with standard recipes
|
|||
|
print(
|
|||
|
'\nPerforming node search using _search method with standard recipe NODE_HYBRID_SEARCH_RRF:'
|
|||
|
)
|
|||
|
|
|||
|
# Use a predefined search configuration recipe and modify its limit
|
|||
|
node_search_config = NODE_HYBRID_SEARCH_RRF.model_copy(deep=True)
|
|||
|
node_search_config.limit = 5 # Limit to 5 results
|
|||
|
|
|||
|
# Execute the node search
|
|||
|
node_search_results = await graphiti._search(
|
|||
|
query='California Governor',
|
|||
|
config=node_search_config,
|
|||
|
)
|
|||
|
|
|||
|
# Print node search results
|
|||
|
print('\nNode Search Results:')
|
|||
|
for node in node_search_results.nodes:
|
|||
|
print(f'Node UUID: {node.uuid}')
|
|||
|
print(f'Node Name: {node.name}')
|
|||
|
node_summary = node.summary[:100] + '...' if len(node.summary) > 100 else node.summary
|
|||
|
print(f'Content Summary: {node_summary}')
|
|||
|
print(f"Node Labels: {', '.join(node.labels)}")
|
|||
|
print(f'Created At: {node.created_at}')
|
|||
|
if hasattr(node, 'attributes') and node.attributes:
|
|||
|
print('Attributes:')
|
|||
|
for key, value in node.attributes.items():
|
|||
|
print(f' {key}: {value}')
|
|||
|
print('---')
|
|||
|
|
|||
|
finally:
|
|||
|
#################################################
|
|||
|
# CLEANUP
|
|||
|
#################################################
|
|||
|
# Always close the connection to Neo4j when
|
|||
|
# finished to properly release resources
|
|||
|
#################################################
|
|||
|
|
|||
|
# Close the connection
|
|||
|
await graphiti.close()
|
|||
|
print('\nConnection closed')
|
|||
|
|
|||
|
|
|||
|
if __name__ == '__main__':
|
|||
|
asyncio.run(main())
|