graphiti/core/utils/maintenance/edge_operations.py

152 lines
3.9 KiB
Python
Raw Normal View History

import logging
from datetime import datetime
from time import time
from typing import List
from core.edges import EntityEdge, EpisodicEdge
from core.llm_client import LLMClient
from core.nodes import EntityNode, EpisodicNode
from core.prompts import prompt_library
logger = logging.getLogger(__name__)
def build_episodic_edges(
entity_nodes: List[EntityNode],
episode: EpisodicNode,
created_at: datetime,
) -> List[EpisodicEdge]:
edges: List[EpisodicEdge] = []
for node in entity_nodes:
edge = EpisodicEdge(
source_node_uuid=episode.uuid,
target_node_uuid=node.uuid,
created_at=created_at,
)
edges.append(edge)
return edges
async def extract_edges(
llm_client: LLMClient,
episode: EpisodicNode,
nodes: list[EntityNode],
previous_episodes: list[EpisodicNode],
) -> list[EntityEdge]:
start = time()
# Prepare context for LLM
context = {
'episode_content': episode.content,
'episode_timestamp': (episode.valid_at.isoformat() if episode.valid_at else None),
'nodes': [
{'uuid': node.uuid, 'name': node.name, 'summary': node.summary} for node in nodes
],
'previous_episodes': [
{
'content': ep.content,
'timestamp': ep.valid_at.isoformat() if ep.valid_at else None,
}
for ep in previous_episodes
],
}
llm_response = await llm_client.generate_response(prompt_library.extract_edges.v2(context))
edges_data = llm_response.get('edges', [])
end = time()
logger.info(f'Extracted new edges: {edges_data} in {(end - start) * 1000} ms')
# Convert the extracted data into EntityEdge objects
edges = []
for edge_data in edges_data:
if edge_data['target_node_uuid'] and edge_data['source_node_uuid']:
edge = EntityEdge(
source_node_uuid=edge_data['source_node_uuid'],
target_node_uuid=edge_data['target_node_uuid'],
name=edge_data['relation_type'],
fact=edge_data['fact'],
episodes=[episode.uuid],
created_at=datetime.now(),
valid_at=None,
invalid_at=None,
)
edges.append(edge)
logger.info(
f'Created new edge: {edge.name} from (UUID: {edge.source_node_uuid}) to (UUID: {edge.target_node_uuid})'
)
return edges
def create_edge_identifier(
source_node: EntityNode, edge: EntityEdge, target_node: EntityNode
) -> str:
return f'{source_node.name}-{edge.name}-{target_node.name}'
async def dedupe_extracted_edges(
llm_client: LLMClient,
extracted_edges: list[EntityEdge],
existing_edges: list[EntityEdge],
) -> list[EntityEdge]:
# Create edge map
edge_map = {}
for edge in existing_edges:
edge_map[edge.fact] = edge
for edge in extracted_edges:
if edge.fact in edge_map:
continue
edge_map[edge.fact] = edge
# Prepare context for LLM
context = {
'extracted_edges': [{'name': edge.name, 'fact': edge.fact} for edge in extracted_edges],
'existing_edges': [{'name': edge.name, 'fact': edge.fact} for edge in extracted_edges],
}
llm_response = await llm_client.generate_response(prompt_library.dedupe_edges.v1(context))
new_edges_data = llm_response.get('new_edges', [])
logger.info(f'Extracted new edges: {new_edges_data}')
# Get full edge data
edges = []
for edge_data in new_edges_data:
edge = edge_map[edge_data['fact']]
edges.append(edge)
return edges
async def dedupe_edge_list(
llm_client: LLMClient,
edges: list[EntityEdge],
) -> list[EntityEdge]:
start = time()
# Create edge map
edge_map = {}
for edge in edges:
edge_map[edge.fact] = edge
# Prepare context for LLM
context = {'edges': [{'name': edge.name, 'fact': edge.fact} for edge in edges]}
llm_response = await llm_client.generate_response(
prompt_library.dedupe_edges.edge_list(context)
)
unique_edges_data = llm_response.get('unique_edges', [])
end = time()
logger.info(f'Extracted edge duplicates: {unique_edges_data} in {(end - start) * 1000} ms ')
# Get full edge data
unique_edges = []
for edge_data in unique_edges_data:
fact = edge_data['fact']
unique_edges.append(edge_map[fact])
return unique_edges