graphiti/core/nodes.py

103 lines
3.0 KiB
Python
Raw Normal View History

import logging
2024-08-13 14:35:43 -04:00
from abc import ABC, abstractmethod
from datetime import datetime
from time import time
from uuid import uuid4
from neo4j import AsyncDriver
from openai import OpenAI
from pydantic import BaseModel, Field
2024-08-13 14:35:43 -04:00
from core.llm_client.config import EMBEDDING_DIM
2024-08-13 14:35:43 -04:00
logger = logging.getLogger(__name__)
class Node(BaseModel, ABC):
uuid: str = Field(default_factory=lambda: uuid4().hex)
name: str
labels: list[str] = Field(default_factory=list)
created_at: datetime
2024-08-13 14:35:43 -04:00
@abstractmethod
async def save(self, driver: AsyncDriver): ...
2024-08-13 14:35:43 -04:00
def __hash__(self):
return hash(self.uuid)
def __eq__(self, other):
if isinstance(other, Node):
return self.uuid == other.uuid
return False
2024-08-13 14:35:43 -04:00
class EpisodicNode(Node):
source: str = Field(description='source type')
source_description: str = Field(description='description of the data source')
content: str = Field(description='raw episode data')
valid_at: datetime = Field(
description='datetime of when the original document was created',
)
entity_edges: list[str] = Field(
description='list of entity edges referenced in this episode',
default_factory=list,
)
async def save(self, driver: AsyncDriver):
result = await driver.execute_query(
"""
2024-08-13 14:35:43 -04:00
MERGE (n:Episodic {uuid: $uuid})
SET n = {uuid: $uuid, name: $name, source_description: $source_description, source: $source, content: $content,
entity_edges: $entity_edges, created_at: $created_at, valid_at: $valid_at}
2024-08-13 14:35:43 -04:00
RETURN n.uuid AS uuid""",
uuid=self.uuid,
name=self.name,
source_description=self.source_description,
content=self.content,
entity_edges=self.entity_edges,
created_at=self.created_at,
valid_at=self.valid_at,
source=self.source,
_database='neo4j',
)
logger.info(f'Saved Node to neo4j: {self.uuid}')
2024-08-13 14:35:43 -04:00
return result
2024-08-13 14:35:43 -04:00
class EntityNode(Node):
name_embedding: list[float] | None = Field(default=None, description='embedding of the name')
summary: str = Field(description='regional summary of surrounding edges', default_factory=str)
async def update_summary(self, driver: AsyncDriver): ...
async def refresh_summary(self, driver: AsyncDriver, llm_client: OpenAI): ...
async def generate_name_embedding(self, embedder, model='text-embedding-3-small'):
start = time()
text = self.name.replace('\n', ' ')
embedding = (await embedder.create(input=[text], model=model)).data[0].embedding
self.name_embedding = embedding[:EMBEDDING_DIM]
end = time()
logger.info(f'embedded {text} in {end-start} ms')
return embedding
async def save(self, driver: AsyncDriver):
result = await driver.execute_query(
"""
MERGE (n:Entity {uuid: $uuid})
SET n = {uuid: $uuid, name: $name, name_embedding: $name_embedding, summary: $summary, created_at: $created_at}
2024-08-13 14:35:43 -04:00
RETURN n.uuid AS uuid""",
uuid=self.uuid,
name=self.name,
summary=self.summary,
name_embedding=self.name_embedding,
created_at=self.created_at,
)
2024-08-13 14:35:43 -04:00
logger.info(f'Saved Node to neo4j: {self.uuid}')
2024-08-13 14:35:43 -04:00
return result