small model fix (#432)

* updated dedupe nodes operations

* updates

* Update examples/podcast/podcast_transcript.txt

Co-authored-by: ellipsis-dev[bot] <65095814+ellipsis-dev[bot]@users.noreply.github.com>

* mypy

---------

Co-authored-by: ellipsis-dev[bot] <65095814+ellipsis-dev[bot]@users.noreply.github.com>
This commit is contained in:
Preston Rasmussen 2025-05-02 10:08:25 -04:00 committed by GitHub
parent f13a497239
commit 2ffc58b3da
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
15 changed files with 102 additions and 48 deletions

View File

@ -20,7 +20,7 @@ Fordham is a well-regarded private university in New York City, founded in 1841
There's a very daunting hall of portraits outside of my office. You know, all of these priests going back to 1841,
0 (1m 41s):
Tet, LO's own father was in fact a priest. But while getting his psychology PhD at Fordham, he met his Wouldbe wife, another graduate student, so he left the priesthood. Tania was born in New York not long before the family moved to New Orleans, so Fordham is in her genes.
Tetlow's own father was in fact a priest. But while getting his psychology PhD at Fordham, he met his Wouldbe wife, another graduate student, so he left the priesthood. Tania was born in New York not long before the family moved to New Orleans, so Fordham is in her genes.
1 (2m 0s):
A good way to recruit me is they can tell me you exist because of us.

View File

@ -396,7 +396,7 @@ class Graphiti:
episode.content = ''
await add_nodes_and_edges_bulk(
self.driver, [episode], episodic_edges, nodes, entity_edges
self.driver, [episode], episodic_edges, hydrated_nodes, entity_edges
)
# Update any communities

View File

@ -28,7 +28,7 @@ from pydantic import BaseModel, ValidationError
from ..prompts.models import Message
from .client import LLMClient
from .config import DEFAULT_MAX_TOKENS, LLMConfig
from .config import DEFAULT_MAX_TOKENS, LLMConfig, ModelSize
from .errors import RateLimitError, RefusalError
logger = logging.getLogger(__name__)
@ -173,6 +173,7 @@ class AnthropicClient(LLMClient):
messages: list[Message],
response_model: type[BaseModel] | None = None,
max_tokens: int | None = None,
model_size: ModelSize = ModelSize.medium,
) -> dict[str, typing.Any]:
"""
Generate a response from the Anthropic LLM using tool-based approach for all requests.
@ -263,6 +264,7 @@ class AnthropicClient(LLMClient):
messages: list[Message],
response_model: type[BaseModel] | None = None,
max_tokens: int | None = None,
model_size: ModelSize = ModelSize.medium,
) -> dict[str, typing.Any]:
"""
Generate a response from the LLM.
@ -289,7 +291,9 @@ class AnthropicClient(LLMClient):
while retry_count <= max_retries:
try:
response = await self._generate_response(messages, response_model, max_tokens)
response = await self._generate_response(
messages, response_model, max_tokens, model_size
)
# If we have a response_model, attempt to validate the response
if response_model is not None:

View File

@ -26,7 +26,7 @@ from pydantic import BaseModel
from tenacity import retry, retry_if_exception, stop_after_attempt, wait_random_exponential
from ..prompts.models import Message
from .config import DEFAULT_MAX_TOKENS, LLMConfig
from .config import DEFAULT_MAX_TOKENS, LLMConfig, ModelSize
from .errors import RateLimitError
DEFAULT_TEMPERATURE = 0
@ -55,6 +55,7 @@ class LLMClient(ABC):
self.config = config
self.model = config.model
self.small_model = config.small_model
self.temperature = config.temperature
self.max_tokens = config.max_tokens
self.cache_enabled = cache
@ -102,9 +103,10 @@ class LLMClient(ABC):
messages: list[Message],
response_model: type[BaseModel] | None = None,
max_tokens: int = DEFAULT_MAX_TOKENS,
model_size: ModelSize = ModelSize.medium,
) -> dict[str, typing.Any]:
try:
return await self._generate_response(messages, response_model, max_tokens)
return await self._generate_response(messages, response_model, max_tokens, model_size)
except (httpx.HTTPStatusError, RateLimitError) as e:
raise e
@ -114,6 +116,7 @@ class LLMClient(ABC):
messages: list[Message],
response_model: type[BaseModel] | None = None,
max_tokens: int = DEFAULT_MAX_TOKENS,
model_size: ModelSize = ModelSize.medium,
) -> dict[str, typing.Any]:
pass
@ -128,6 +131,7 @@ class LLMClient(ABC):
messages: list[Message],
response_model: type[BaseModel] | None = None,
max_tokens: int | None = None,
model_size: ModelSize = ModelSize.medium,
) -> dict[str, typing.Any]:
if max_tokens is None:
max_tokens = self.max_tokens
@ -154,7 +158,9 @@ class LLMClient(ABC):
for message in messages:
message.content = self._clean_input(message.content)
response = await self._generate_response_with_retry(messages, response_model, max_tokens)
response = await self._generate_response_with_retry(
messages, response_model, max_tokens, model_size
)
if self.cache_enabled and self.cache_dir is not None:
cache_key = self._get_cache_key(messages)

View File

@ -14,10 +14,17 @@ See the License for the specific language governing permissions and
limitations under the License.
"""
from enum import Enum
DEFAULT_MAX_TOKENS = 8192
DEFAULT_TEMPERATURE = 0
class ModelSize(Enum):
small = 'small'
medium = 'medium'
class LLMConfig:
"""
Configuration class for the Language Learning Model (LLM).
@ -34,6 +41,7 @@ class LLMConfig:
base_url: str | None = None,
temperature: float = DEFAULT_TEMPERATURE,
max_tokens: int = DEFAULT_MAX_TOKENS,
small_model: str | None = None,
):
"""
Initialize the LLMConfig with the provided parameters.
@ -43,15 +51,18 @@ class LLMConfig:
This is required for making authorized requests.
model (str, optional): The specific LLM model to use for generating responses.
Defaults to "gpt-4.1-mini", which appears to be a custom model name.
Common values might include "gpt-3.5-turbo" or "gpt-4".
Defaults to "gpt-4.1-mini".
base_url (str, optional): The base URL of the LLM API service.
Defaults to "https://api.openai.com", which is OpenAI's standard API endpoint.
This can be changed if using a different provider or a custom endpoint.
small_model (str, optional): The specific LLM model to use for generating responses of simpler prompts.
Defaults to "gpt-4.1-nano".
"""
self.base_url = base_url
self.api_key = api_key
self.model = model
self.small_model = small_model
self.temperature = temperature
self.max_tokens = max_tokens

View File

@ -24,7 +24,7 @@ from pydantic import BaseModel
from ..prompts.models import Message
from .client import LLMClient
from .config import DEFAULT_MAX_TOKENS, LLMConfig
from .config import DEFAULT_MAX_TOKENS, LLMConfig, ModelSize
from .errors import RateLimitError
logger = logging.getLogger(__name__)
@ -82,6 +82,7 @@ class GeminiClient(LLMClient):
messages: list[Message],
response_model: type[BaseModel] | None = None,
max_tokens: int = DEFAULT_MAX_TOKENS,
model_size: ModelSize = ModelSize.medium,
) -> dict[str, typing.Any]:
"""
Generate a response from the Gemini language model.
@ -167,6 +168,7 @@ class GeminiClient(LLMClient):
messages: list[Message],
response_model: type[BaseModel] | None = None,
max_tokens: int | None = None,
model_size: ModelSize = ModelSize.medium,
) -> dict[str, typing.Any]:
"""
Generate a response from the Gemini language model.
@ -185,5 +187,8 @@ class GeminiClient(LLMClient):
# Call the internal _generate_response method
return await self._generate_response(
messages=messages, response_model=response_model, max_tokens=max_tokens
messages=messages,
response_model=response_model,
max_tokens=max_tokens,
model_size=model_size,
)

View File

@ -25,7 +25,7 @@ from pydantic import BaseModel
from ..prompts.models import Message
from .client import LLMClient
from .config import LLMConfig
from .config import LLMConfig, ModelSize
from .errors import RateLimitError
logger = logging.getLogger(__name__)
@ -49,6 +49,7 @@ class GroqClient(LLMClient):
messages: list[Message],
response_model: type[BaseModel] | None = None,
max_tokens: int = DEFAULT_MAX_TOKENS,
model_size: ModelSize = ModelSize.medium,
) -> dict[str, typing.Any]:
msgs: list[ChatCompletionMessageParam] = []
for m in messages:

View File

@ -25,12 +25,13 @@ from pydantic import BaseModel
from ..prompts.models import Message
from .client import MULTILINGUAL_EXTRACTION_RESPONSES, LLMClient
from .config import DEFAULT_MAX_TOKENS, LLMConfig
from .config import DEFAULT_MAX_TOKENS, LLMConfig, ModelSize
from .errors import RateLimitError, RefusalError
logger = logging.getLogger(__name__)
DEFAULT_MODEL = 'gpt-4.1-mini'
DEFAULT_SMALL_MODEL = 'gpt-4.1-nano'
class OpenAIClient(LLMClient):
@ -94,6 +95,7 @@ class OpenAIClient(LLMClient):
messages: list[Message],
response_model: type[BaseModel] | None = None,
max_tokens: int = DEFAULT_MAX_TOKENS,
model_size: ModelSize = ModelSize.medium,
) -> dict[str, typing.Any]:
openai_messages: list[ChatCompletionMessageParam] = []
for m in messages:
@ -103,8 +105,13 @@ class OpenAIClient(LLMClient):
elif m.role == 'system':
openai_messages.append({'role': 'system', 'content': m.content})
try:
if model_size == ModelSize.small:
model = self.small_model or DEFAULT_SMALL_MODEL
else:
model = self.model or DEFAULT_MODEL
response = await self.client.beta.chat.completions.parse(
model=self.model or DEFAULT_MODEL,
model=model,
messages=openai_messages,
temperature=self.temperature,
max_tokens=max_tokens or self.max_tokens,
@ -132,6 +139,7 @@ class OpenAIClient(LLMClient):
messages: list[Message],
response_model: type[BaseModel] | None = None,
max_tokens: int | None = None,
model_size: ModelSize = ModelSize.medium,
) -> dict[str, typing.Any]:
if max_tokens is None:
max_tokens = self.max_tokens
@ -144,7 +152,9 @@ class OpenAIClient(LLMClient):
while retry_count <= self.MAX_RETRIES:
try:
response = await self._generate_response(messages, response_model, max_tokens)
response = await self._generate_response(
messages, response_model, max_tokens, model_size
)
return response
except (RateLimitError, RefusalError):
# These errors should not trigger retries

View File

@ -26,7 +26,7 @@ from pydantic import BaseModel
from ..prompts.models import Message
from .client import MULTILINGUAL_EXTRACTION_RESPONSES, LLMClient
from .config import DEFAULT_MAX_TOKENS, LLMConfig
from .config import DEFAULT_MAX_TOKENS, LLMConfig, ModelSize
from .errors import RateLimitError, RefusalError
logger = logging.getLogger(__name__)
@ -89,6 +89,7 @@ class OpenAIGenericClient(LLMClient):
messages: list[Message],
response_model: type[BaseModel] | None = None,
max_tokens: int = DEFAULT_MAX_TOKENS,
model_size: ModelSize = ModelSize.medium,
) -> dict[str, typing.Any]:
openai_messages: list[ChatCompletionMessageParam] = []
for m in messages:
@ -118,6 +119,7 @@ class OpenAIGenericClient(LLMClient):
messages: list[Message],
response_model: type[BaseModel] | None = None,
max_tokens: int | None = None,
model_size: ModelSize = ModelSize.medium,
) -> dict[str, typing.Any]:
if max_tokens is None:
max_tokens = self.max_tokens
@ -139,7 +141,7 @@ class OpenAIGenericClient(LLMClient):
while retry_count <= self.MAX_RETRIES:
try:
response = await self._generate_response(
messages, response_model, max_tokens=max_tokens
messages, response_model, max_tokens=max_tokens, model_size=model_size
)
return response
except (RateLimitError, RefusalError):

View File

@ -27,6 +27,7 @@ class NodeDuplicate(BaseModel):
...,
description='id of the duplicate node. If no duplicate nodes are found, default to -1.',
)
name: str = Field(..., description='Name of the entity.')
class Prompt(Protocol):
@ -43,7 +44,7 @@ def node(context: dict[str, Any]) -> list[Message]:
return [
Message(
role='system',
content='You are a helpful assistant that de-duplicates nodes from node lists.',
content='You are a helpful assistant that de-duplicates entities from entity lists.',
),
Message(
role='user',
@ -54,25 +55,33 @@ def node(context: dict[str, Any]) -> list[Message]:
<CURRENT MESSAGE>
{context['episode_content']}
</CURRENT MESSAGE>
<EXISTING NODES>
{json.dumps(context['existing_nodes'], indent=2)}
</EXISTING NODES>
Given the above EXISTING NODES and their attributes, MESSAGE, and PREVIOUS MESSAGES; Determine if the NEW NODE extracted from the conversation
is a duplicate entity of one of the EXISTING NODES.
<NEW NODE>
<NEW ENTITY>
{json.dumps(context['extracted_node'], indent=2)}
</NEW NODE>
</NEW ENTITY>
<ENTITY TYPE DESCRIPTION>
{json.dumps(context['entity_type_description'], indent=2)}
</ENTITY TYPE DESCRIPTION>
<EXISTING ENTITIES>
{json.dumps(context['existing_nodes'], indent=2)}
</EXISTING ENTITIES>
Given the above EXISTING ENTITIES and their attributes, MESSAGE, and PREVIOUS MESSAGES; Determine if the NEW ENTITY extracted from the conversation
is a duplicate entity of one of the EXISTING ENTITIES.
The ENTITY TYPE DESCRIPTION gives more insight into what the entity type means for the NEW ENTITY.
Task:
If the NEW NODE is a duplicate of any node in EXISTING NODES, set duplicate_node_id to the
id of the EXISTING NODE that is the duplicate. If the NEW NODE is not a duplicate of any of the EXISTING NODES,
duplicate_node_id should be set to -1.
If the NEW ENTITY represents a duplicate entity of any entity in EXISTING ENTITIES, set duplicate_entity_id to the
id of the EXISTING ENTITY that is the duplicate. If the NEW ENTITY is not a duplicate of any of the EXISTING ENTITIES,
duplicate_entity_id should be set to -1.
Also return the most complete name for the entity.
Guidelines:
1. Use the name, summary, and attributes of nodes to determine if the entities are duplicates,
duplicate nodes may have different names
1. Entities with the same name should be considered duplicates
2. Duplicate entities may refer to the same real-world entity even if names differ. Use context clues from the MESSAGES
to determine if the NEW ENTITY represents a duplicate entity of one of the EXISTING ENTITIES.
""",
),
]

View File

@ -256,7 +256,7 @@ def extract_attributes(context: dict[str, Any]) -> list[Message]:
1. Do not hallucinate entity property values if they cannot be found in the current context.
2. Only use the provided MESSAGES and ENTITY to set attribute values.
3. The summary attribute represents a summary of the ENTITY, and should be updated with new information about the Entity from the MESSAGES.
Summaries must be no longer than 200 words.
Summaries must be no longer than 500 words.
<ENTITY>
{context['node']}

View File

@ -27,6 +27,7 @@ from graphiti_core.edges import (
from graphiti_core.graphiti_types import GraphitiClients
from graphiti_core.helpers import MAX_REFLEXION_ITERATIONS, semaphore_gather
from graphiti_core.llm_client import LLMClient
from graphiti_core.llm_client.config import ModelSize
from graphiti_core.nodes import CommunityNode, EntityNode, EpisodicNode
from graphiti_core.prompts import prompt_library
from graphiti_core.prompts.dedupe_edges import EdgeDuplicate, UniqueFacts
@ -377,7 +378,9 @@ async def dedupe_extracted_edge(
}
llm_response = await llm_client.generate_response(
prompt_library.dedupe_edges.edge(context), response_model=EdgeDuplicate
prompt_library.dedupe_edges.edge(context),
response_model=EdgeDuplicate,
model_size=ModelSize.small,
)
duplicate_fact_id: int = llm_response.get('duplicate_fact_id', -1)

View File

@ -25,6 +25,7 @@ from pydantic import BaseModel, Field
from graphiti_core.graphiti_types import GraphitiClients
from graphiti_core.helpers import MAX_REFLEXION_ITERATIONS, semaphore_gather
from graphiti_core.llm_client import LLMClient
from graphiti_core.llm_client.config import ModelSize
from graphiti_core.nodes import EntityNode, EpisodeType, EpisodicNode, create_entity_node_embeddings
from graphiti_core.prompts import prompt_library
from graphiti_core.prompts.dedupe_nodes import NodeDuplicate
@ -281,7 +282,6 @@ async def resolve_extracted_node(
'id': i,
'name': node.name,
'entity_types': node.labels,
'summary': node.summary,
},
**node.attributes,
}
@ -291,14 +291,14 @@ async def resolve_extracted_node(
extracted_node_context = {
'name': extracted_node.name,
'entity_type': entity_type.__name__ if entity_type is not None else 'Entity', # type: ignore
'entity_type_description': entity_type.__doc__
if entity_type is not None
else 'Default Entity Type',
}
context = {
'existing_nodes': existing_nodes_context,
'extracted_node': extracted_node_context,
'entity_type_description': entity_type.__doc__
if entity_type is not None
else 'Default Entity Type',
'episode_content': episode.content if episode is not None else '',
'previous_episodes': [ep.content for ep in previous_episodes]
if previous_episodes is not None
@ -306,7 +306,9 @@ async def resolve_extracted_node(
}
llm_response = await llm_client.generate_response(
prompt_library.dedupe_nodes.node(context), response_model=NodeDuplicate
prompt_library.dedupe_nodes.node(context),
response_model=NodeDuplicate,
model_size=ModelSize.small,
)
duplicate_id: int = llm_response.get('duplicate_node_id', -1)
@ -315,6 +317,8 @@ async def resolve_extracted_node(
existing_nodes[duplicate_id] if 0 <= duplicate_id < len(existing_nodes) else extracted_node
)
node.name = llm_response.get('name', '')
end = time()
logger.debug(
f'Resolved node: {extracted_node.name} is {node.name}, in {(end - start) * 1000} ms'
@ -371,13 +375,9 @@ async def extract_attributes_from_node(
'summary': (
str,
Field(
description='Summary containing the important information about the entity. Under 200 words',
description='Summary containing the important information about the entity. Under 500 words',
),
),
'name': (
str,
Field(description='Name of the ENTITY'),
),
)
}
if entity_type is not None:

View File

@ -20,6 +20,7 @@ from time import time
from graphiti_core.edges import EntityEdge
from graphiti_core.llm_client import LLMClient
from graphiti_core.llm_client.config import ModelSize
from graphiti_core.nodes import EpisodicNode
from graphiti_core.prompts import prompt_library
from graphiti_core.prompts.extract_edge_dates import EdgeDates
@ -81,7 +82,9 @@ async def get_edge_contradictions(
context = {'new_edge': new_edge_context, 'existing_edges': existing_edge_context}
llm_response = await llm_client.generate_response(
prompt_library.invalidate_edges.v2(context), response_model=InvalidatedEdges
prompt_library.invalidate_edges.v2(context),
response_model=InvalidatedEdges,
model_size=ModelSize.small,
)
contradicted_facts: list[int] = llm_response.get('contradicted_facts', [])

View File

@ -1,7 +1,7 @@
[project]
name = "graphiti-core"
description = "A temporal graph building library"
version = "0.11.3"
version = "0.11.4"
authors = [
{ "name" = "Paul Paliychuk", "email" = "paul@getzep.com" },
{ "name" = "Preston Rasmussen", "email" = "preston@getzep.com" },