Allow usage of different openai compatible clients in embedder and encoder (#279)

* allow usage of different openai compatible clients in embedder and encoder

* azure openai

* cross encoder example

---------

Co-authored-by: Daniel Chalef <131175+danielchalef@users.noreply.github.com>
This commit is contained in:
Tomek Słoma 2025-03-16 04:46:22 +01:00 committed by GitHub
parent 55e308fb9f
commit 5cad6c8504
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 42 additions and 8 deletions

View File

@ -205,6 +205,7 @@ from openai import AsyncAzureOpenAI
from graphiti_core import Graphiti
from graphiti_core.llm_client import OpenAIClient
from graphiti_core.embedder.openai import OpenAIEmbedder, OpenAIEmbedderConfig
from graphiti_core.cross_encoder.openai_reranker_client import OpenAIRerankerClient
# Azure OpenAI configuration
api_key = "<your-api-key>"
@ -231,6 +232,10 @@ graphiti = Graphiti(
embedding_model="text-embedding-3-small" # Use your Azure deployed embedding model name
),
client=azure_openai_client
),
# Optional: Configure the OpenAI cross encoder with Azure OpenAI
cross_encoder=OpenAIRerankerClient(
client=azure_openai_client
)
)

View File

@ -0,0 +1,21 @@
"""
Copyright 2025, Zep Software, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from .bge_reranker_client import BGERerankerClient
from .client import CrossEncoderClient
from .openai_reranker_client import OpenAIRerankerClient
__all__ = ['CrossEncoderClient', 'BGERerankerClient', 'OpenAIRerankerClient']

View File

@ -18,7 +18,7 @@ import logging
from typing import Any
import openai
from openai import AsyncOpenAI
from openai import AsyncAzureOpenAI, AsyncOpenAI
from pydantic import BaseModel
from ..helpers import semaphore_gather
@ -36,21 +36,29 @@ class BooleanClassifier(BaseModel):
class OpenAIRerankerClient(CrossEncoderClient):
def __init__(self, config: LLMConfig | None = None):
def __init__(
self,
config: LLMConfig | None = None,
client: AsyncOpenAI | AsyncAzureOpenAI | None = None,
):
"""
Initialize the OpenAIClient with the provided configuration, cache setting, and client.
Initialize the OpenAIRerankerClient with the provided configuration and client.
This reranker uses the OpenAI API to run a simple boolean classifier prompt concurrently
for each passage. Log-probabilities are used to rank the passages.
Args:
config (LLMConfig | None): The configuration for the LLM client, including API key, model, base URL, temperature, and max tokens.
cache (bool): Whether to use caching for responses. Defaults to False.
client (Any | None): An optional async client instance to use. If not provided, a new AsyncOpenAI client is created.
client (AsyncOpenAI | AsyncAzureOpenAI | None): An optional async client instance to use. If not provided, a new AsyncOpenAI client is created.
"""
if config is None:
config = LLMConfig()
self.config = config
self.client = AsyncOpenAI(api_key=config.api_key, base_url=config.base_url)
if client is None:
self.client = AsyncOpenAI(api_key=config.api_key, base_url=config.base_url)
else:
self.client = client
async def rank(self, query: str, passages: list[str]) -> list[tuple[str, float]]:
openai_messages_list: Any = [
@ -62,7 +70,7 @@ class OpenAIRerankerClient(CrossEncoderClient):
Message(
role='user',
content=f"""
Respond with "True" if PASSAGE is relevant to QUERY and "False" otherwise.
Respond with "True" if PASSAGE is relevant to QUERY and "False" otherwise.
<PASSAGE>
{passage}
</PASSAGE>