""" Copyright 2024, Zep Software, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import asyncio import csv import logging import os import sys from time import time from dotenv import load_dotenv from examples.multi_session_conversation_memory.parse_msc_messages import conversation_q_and_a from graphiti_core import Graphiti from graphiti_core.prompts import prompt_library from graphiti_core.search.search_config_recipes import COMBINED_HYBRID_SEARCH_RRF load_dotenv() neo4j_uri = os.environ.get('NEO4J_URI') or 'bolt://localhost:7687' neo4j_user = os.environ.get('NEO4J_USER') or 'neo4j' neo4j_password = os.environ.get('NEO4J_PASSWORD') or 'password' def setup_logging(): # Create a logger logger = logging.getLogger() logger.setLevel(logging.INFO) # Set the logging level to INFO # Create console handler and set level to INFO console_handler = logging.StreamHandler(sys.stdout) console_handler.setLevel(logging.INFO) # Create formatter formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') # Add formatter to console handler console_handler.setFormatter(formatter) # Add console handler to logger logger.addHandler(console_handler) return logger async def evaluate_qa(graphiti: Graphiti, group_id: str, query: str, answer: str): search_start = time() results = await graphiti._search(query, COMBINED_HYBRID_SEARCH_RRF, group_ids=[str(group_id)]) search_end = time() search_duration = search_end - search_start facts = [edge.fact for edge in results.edges] entity_summaries = [node.name + ': ' + node.summary for node in results.nodes] context = {'facts': facts, 'entity_summaries': entity_summaries, 'query': 'Bob: ' + query} llm_response = await graphiti.llm_client.generate_response( prompt_library.eval.qa_prompt(context) ) response = llm_response.get('ANSWER', '') eval_context = { 'query': 'Bob: ' + query, 'answer': 'Alice: ' + answer, 'response': 'Alice: ' + response, } eval_llm_response = await graphiti.llm_client.generate_response( prompt_library.eval.eval_prompt(eval_context) ) eval_response = 1 if eval_llm_response.get('is_correct', False) else 0 return { 'Group id': group_id, 'Question': query, 'Answer': answer, 'Response': response, 'Score': eval_response, 'Search Duration (ms)': search_duration * 1000, } async def main(): setup_logging() graphiti = Graphiti(neo4j_uri, neo4j_user, neo4j_password) fields = ['Group id', 'Question', 'Answer', 'Response', 'Score', 'Search Duration (ms)'] with open('../data/msc_eval.csv', 'w', newline='') as file: writer = csv.DictWriter(file, fieldnames=fields) writer.writeheader() qa = conversation_q_and_a()[0:500] i = 0 while i < 500: qa_chunk = qa[i : i + 20] group_ids = range(len(qa))[i : i + 20] results = list( await asyncio.gather( *[ evaluate_qa(graphiti, str(group_id), query, answer) for group_id, (query, answer) in zip(group_ids, qa_chunk) ] ) ) with open('../data/msc_eval.csv', 'a', newline='') as file: writer = csv.DictWriter(file, fieldnames=fields) writer.writerows(results) i += 20 await graphiti.close() asyncio.run(main())