""" Copyright 2024, Zep Software, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import json import logging import typing import openai from openai import AsyncOpenAI from openai.types.chat import ChatCompletionMessageParam from ..prompts.models import Message from .client import LLMClient from .config import LLMConfig from .errors import RateLimitError logger = logging.getLogger(__name__) DEFAULT_MODEL = 'gpt-4o-2024-08-06' class OpenAIClient(LLMClient): def __init__(self, config: LLMConfig | None = None, cache: bool = False): if config is None: config = LLMConfig() super().__init__(config, cache) self.client = AsyncOpenAI(api_key=config.api_key, base_url=config.base_url) def get_embedder(self) -> typing.Any: return self.client.embeddings async def _generate_response(self, messages: list[Message]) -> dict[str, typing.Any]: openai_messages: list[ChatCompletionMessageParam] = [] for m in messages: if m.role == 'user': openai_messages.append({'role': 'user', 'content': m.content}) elif m.role == 'system': openai_messages.append({'role': 'system', 'content': m.content}) try: response = await self.client.chat.completions.create( model=self.model or DEFAULT_MODEL, messages=openai_messages, temperature=self.temperature, max_tokens=self.max_tokens, response_format={'type': 'json_object'}, ) result = response.choices[0].message.content or '' return json.loads(result) except openai.RateLimitError as e: raise RateLimitError from e except Exception as e: logger.error(f'Error in generating LLM response: {e}') raise