""" Copyright 2024, Zep Software, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging from abc import ABC, abstractmethod from datetime import datetime from time import time from uuid import uuid4 from neo4j import AsyncDriver from openai import OpenAI from pydantic import BaseModel, Field from graphiti_core.llm_client.config import EMBEDDING_DIM logger = logging.getLogger(__name__) class Node(BaseModel, ABC): uuid: str = Field(default_factory=lambda: uuid4().hex) name: str labels: list[str] = Field(default_factory=list) created_at: datetime @abstractmethod async def save(self, driver: AsyncDriver): ... def __hash__(self): return hash(self.uuid) def __eq__(self, other): if isinstance(other, Node): return self.uuid == other.uuid return False class EpisodicNode(Node): source: str = Field(description='source type') source_description: str = Field(description='description of the data source') content: str = Field(description='raw episode data') valid_at: datetime = Field( description='datetime of when the original document was created', ) entity_edges: list[str] = Field( description='list of entity edges referenced in this episode', default_factory=list, ) async def save(self, driver: AsyncDriver): result = await driver.execute_query( """ MERGE (n:Episodic {uuid: $uuid}) SET n = {uuid: $uuid, name: $name, source_description: $source_description, source: $source, content: $content, entity_edges: $entity_edges, created_at: $created_at, valid_at: $valid_at} RETURN n.uuid AS uuid""", uuid=self.uuid, name=self.name, source_description=self.source_description, content=self.content, entity_edges=self.entity_edges, created_at=self.created_at, valid_at=self.valid_at, source=self.source, _database='neo4j', ) logger.info(f'Saved Node to neo4j: {self.uuid}') return result class EntityNode(Node): name_embedding: list[float] | None = Field(default=None, description='embedding of the name') summary: str = Field(description='regional summary of surrounding edges', default_factory=str) async def update_summary(self, driver: AsyncDriver): ... async def refresh_summary(self, driver: AsyncDriver, llm_client: OpenAI): ... async def generate_name_embedding(self, embedder, model='text-embedding-3-small'): start = time() text = self.name.replace('\n', ' ') embedding = (await embedder.create(input=[text], model=model)).data[0].embedding self.name_embedding = embedding[:EMBEDDING_DIM] end = time() logger.info(f'embedded {text} in {end-start} ms') return embedding async def save(self, driver: AsyncDriver): result = await driver.execute_query( """ MERGE (n:Entity {uuid: $uuid}) SET n = {uuid: $uuid, name: $name, name_embedding: $name_embedding, summary: $summary, created_at: $created_at} RETURN n.uuid AS uuid""", uuid=self.uuid, name=self.name, summary=self.summary, name_embedding=self.name_embedding, created_at=self.created_at, ) logger.info(f'Saved Node to neo4j: {self.uuid}') return result