""" Copyright 2024, Zep Software, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import asyncio import logging import typing from collections import defaultdict from datetime import datetime from math import ceil from neo4j import AsyncDriver from numpy import dot, sqrt from pydantic import BaseModel from graphiti_core.edges import Edge, EntityEdge, EpisodicEdge from graphiti_core.llm_client import LLMClient from graphiti_core.nodes import EntityNode, EpisodeType, EpisodicNode from graphiti_core.search.search_utils import get_relevant_edges, get_relevant_nodes from graphiti_core.utils import retrieve_episodes from graphiti_core.utils.maintenance.edge_operations import ( build_episodic_edges, dedupe_edge_list, dedupe_extracted_edges, extract_edges, ) from graphiti_core.utils.maintenance.graph_data_operations import EPISODE_WINDOW_LEN from graphiti_core.utils.maintenance.node_operations import ( dedupe_extracted_nodes, dedupe_node_list, extract_nodes, ) from graphiti_core.utils.maintenance.temporal_operations import extract_edge_dates logger = logging.getLogger(__name__) CHUNK_SIZE = 10 class RawEpisode(BaseModel): name: str content: str source_description: str source: EpisodeType reference_time: datetime async def retrieve_previous_episodes_bulk( driver: AsyncDriver, episodes: list[EpisodicNode] ) -> list[tuple[EpisodicNode, list[EpisodicNode]]]: previous_episodes_list = await asyncio.gather( *[ retrieve_episodes(driver, episode.valid_at, last_n=EPISODE_WINDOW_LEN) for episode in episodes ] ) episode_tuples: list[tuple[EpisodicNode, list[EpisodicNode]]] = [ (episode, previous_episodes_list[i]) for i, episode in enumerate(episodes) ] return episode_tuples async def extract_nodes_and_edges_bulk( llm_client: LLMClient, episode_tuples: list[tuple[EpisodicNode, list[EpisodicNode]]] ) -> tuple[list[EntityNode], list[EntityEdge], list[EpisodicEdge]]: extracted_nodes_bulk = await asyncio.gather( *[ extract_nodes(llm_client, episode, previous_episodes) for episode, previous_episodes in episode_tuples ] ) episodes, previous_episodes_list = ( [episode[0] for episode in episode_tuples], [episode[1] for episode in episode_tuples], ) extracted_edges_bulk = await asyncio.gather( *[ extract_edges(llm_client, episode, extracted_nodes_bulk[i], previous_episodes_list[i]) for i, episode in enumerate(episodes) ] ) episodic_edges: list[EpisodicEdge] = [] for i, episode in enumerate(episodes): episodic_edges += build_episodic_edges(extracted_nodes_bulk[i], episode, episode.created_at) nodes: list[EntityNode] = [] for extracted_nodes in extracted_nodes_bulk: nodes += extracted_nodes edges: list[EntityEdge] = [] for extracted_edges in extracted_edges_bulk: edges += extracted_edges return nodes, edges, episodic_edges async def dedupe_nodes_bulk( driver: AsyncDriver, llm_client: LLMClient, extracted_nodes: list[EntityNode], ) -> tuple[list[EntityNode], dict[str, str]]: # Compress nodes nodes, uuid_map = node_name_match(extracted_nodes) compressed_nodes, compressed_map = await compress_nodes(llm_client, nodes, uuid_map) node_chunks = [nodes[i: i + CHUNK_SIZE] for i in range(0, len(nodes), CHUNK_SIZE)] existing_nodes_chunks: list[list[EntityNode]] = list( await asyncio.gather( *[get_relevant_nodes(node_chunk, driver) for node_chunk in node_chunks] ) ) results: list[tuple[list[EntityNode], dict[str, str], list[EntityNode]]] = list( await asyncio.gather( *[ dedupe_extracted_nodes(llm_client, node_chunk, existing_nodes_chunks[i]) for i, node_chunk in enumerate(node_chunks) ] ) ) final_nodes: list[EntityNode] = [] for result in results: final_nodes.extend(result[0]) partial_uuid_map = result[1] compressed_map.update(partial_uuid_map) return final_nodes, compressed_map async def dedupe_edges_bulk( driver: AsyncDriver, llm_client: LLMClient, extracted_edges: list[EntityEdge] ) -> list[EntityEdge]: # First compress edges compressed_edges = await compress_edges(llm_client, extracted_edges) edge_chunks = [ compressed_edges[i: i + CHUNK_SIZE] for i in range(0, len(compressed_edges), CHUNK_SIZE) ] relevant_edges_chunks: list[list[EntityEdge]] = list( await asyncio.gather( *[get_relevant_edges(edge_chunk, driver) for edge_chunk in edge_chunks] ) ) resolved_edge_chunks: list[list[EntityEdge]] = list( await asyncio.gather( *[ dedupe_extracted_edges(llm_client, edge_chunk, relevant_edges_chunks[i]) for i, edge_chunk in enumerate(edge_chunks) ] ) ) edges = [edge for edge_chunk in resolved_edge_chunks for edge in edge_chunk] return edges def node_name_match(nodes: list[EntityNode]) -> tuple[list[EntityNode], dict[str, str]]: uuid_map: dict[str, str] = {} name_map: dict[str, EntityNode] = {} for node in nodes: if node.name in name_map: uuid_map[node.uuid] = name_map[node.name].uuid continue name_map[node.name] = node return [node for node in name_map.values()], uuid_map async def compress_nodes( llm_client: LLMClient, nodes: list[EntityNode], uuid_map: dict[str, str] ) -> tuple[list[EntityNode], dict[str, str]]: # We want to first compress the nodes by deduplicating nodes across each of the episodes added in bulk if len(nodes) == 0: return nodes, uuid_map # Our approach involves us deduplicating chunks of nodes in parallel. # We want n chunks of size n so that n ** 2 == len(nodes). # We want chunk sizes to be at least 10 for optimizing LLM processing time chunk_size = max(int(sqrt(len(nodes))), CHUNK_SIZE) # First calculate similarity scores between nodes similarity_scores: list[tuple[int, int, float]] = [ (i, j, dot(n.name_embedding or [], m.name_embedding or [])) for i, n in enumerate(nodes) for j, m in enumerate(nodes[:i]) ] # We now sort by semantic similarity similarity_scores.sort(key=lambda score_tuple: score_tuple[2]) # initialize our chunks based on chunk size node_chunks: list[list[EntityNode]] = [[] for _ in range(ceil(len(nodes) / chunk_size))] # Draft the most similar nodes into the same chunk while len(similarity_scores) > 0: i, j, _ = similarity_scores.pop() # determine if any of the nodes have already been drafted into a chunk n = nodes[i] m = nodes[j] # make sure the shortest chunks get preference node_chunks.sort(reverse=True, key=lambda chunk: len(chunk)) n_chunk = max([i if n in chunk else -1 for i, chunk in enumerate(node_chunks)]) m_chunk = max([i if m in chunk else -1 for i, chunk in enumerate(node_chunks)]) # both nodes already in a chunk if n_chunk > -1 and m_chunk > -1: continue # n has a chunk and that chunk is not full elif n_chunk > -1 and len(node_chunks[n_chunk]) < chunk_size: # put m in the same chunk as n node_chunks[n_chunk].append(m) # m has a chunk and that chunk is not full elif m_chunk > -1 and len(node_chunks[m_chunk]) < chunk_size: # put n in the same chunk as m node_chunks[m_chunk].append(n) # neither node has a chunk or the chunk is full else: # add both nodes to the shortest chunk node_chunks[-1].extend([n, m]) results = await asyncio.gather(*[dedupe_node_list(llm_client, chunk) for chunk in node_chunks]) extended_map = dict(uuid_map) compressed_nodes: list[EntityNode] = [] for node_chunk, uuid_map_chunk in results: compressed_nodes += node_chunk extended_map.update(uuid_map_chunk) # Check if we have removed all duplicates if len(compressed_nodes) == len(nodes): compressed_uuid_map = compress_uuid_map(extended_map) return compressed_nodes, compressed_uuid_map return await compress_nodes(llm_client, compressed_nodes, extended_map) async def compress_edges(llm_client: LLMClient, edges: list[EntityEdge]) -> list[EntityEdge]: if len(edges) == 0: return edges # We only want to dedupe edges that are between the same pair of nodes # We build a map of the edges based on their source and target nodes. edge_chunk_map: dict[str, list[EntityEdge]] = defaultdict(list) for edge in edges: # We drop loop edges if edge.source_node_uuid == edge.target_node_uuid: continue # Keep the order of the two nodes consistent, we want to be direction agnostic during edge resolution pointers = [edge.source_node_uuid, edge.target_node_uuid] pointers.sort() edge_chunk_map[pointers[0] + pointers[1]].append(edge) edge_chunks = [chunk for chunk in edge_chunk_map.values()] results = await asyncio.gather(*[dedupe_edge_list(llm_client, chunk) for chunk in edge_chunks]) compressed_edges: list[EntityEdge] = [] for edge_chunk in results: compressed_edges += edge_chunk # Check if we have removed all duplicates if len(compressed_edges) == len(edges): return compressed_edges return await compress_edges(llm_client, compressed_edges) def compress_uuid_map(uuid_map: dict[str, str]) -> dict[str, str]: # make sure all uuid values aren't mapped to other uuids compressed_map = {} for key, uuid in uuid_map.items(): curr_value = uuid while curr_value in uuid_map: curr_value = uuid_map[curr_value] compressed_map[key] = curr_value return compressed_map E = typing.TypeVar('E', bound=Edge) def resolve_edge_pointers(edges: list[E], uuid_map: dict[str, str]): for edge in edges: source_uuid = edge.source_node_uuid target_uuid = edge.target_node_uuid edge.source_node_uuid = uuid_map.get(source_uuid, source_uuid) edge.target_node_uuid = uuid_map.get(target_uuid, target_uuid) return edges async def extract_edge_dates_bulk( llm_client: LLMClient, extracted_edges: list[EntityEdge], episode_pairs: list[tuple[EpisodicNode, list[EpisodicNode]]], ) -> list[EntityEdge]: edges: list[EntityEdge] = [] # confirm that all of our edges have at least one episode for edge in extracted_edges: if edge.episodes is not None and len(edge.episodes) > 0: edges.append(edge) episode_uuid_map: dict[str, tuple[EpisodicNode, list[EpisodicNode]]] = { episode.uuid: (episode, previous_episodes) for episode, previous_episodes in episode_pairs } results = await asyncio.gather( *[ extract_edge_dates( llm_client, edge, episode_uuid_map[edge.episodes[0]][0], # type: ignore episode_uuid_map[edge.episodes[0]][1], # type: ignore ) for edge in edges ] ) for i, result in enumerate(results): valid_at = result[0] invalid_at = result[1] edge = edges[i] edge.valid_at = valid_at edge.invalid_at = invalid_at if edge.invalid_at: edge.expired_at = datetime.now() return edges