Preston Rasmussen fd341a6f16
Add MSC benchmark and improve search performance (#157)
* test cases

* test

* benchmark

* eval updates

* improve search performance

* remove data

* formatting

* add None type to config

* update sanitization

* push version

* maketrans update

* mypy
2024-09-26 16:12:38 -04:00

127 lines
3.9 KiB
Python

"""
Copyright 2024, Zep Software, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import asyncio
import csv
import logging
import os
import sys
from time import time
from dotenv import load_dotenv
from examples.multi_session_conversation_memory.parse_msc_messages import conversation_q_and_a
from graphiti_core import Graphiti
from graphiti_core.prompts import prompt_library
from graphiti_core.search.search_config_recipes import COMBINED_HYBRID_SEARCH_RRF
load_dotenv()
neo4j_uri = os.environ.get('NEO4J_URI') or 'bolt://localhost:7687'
neo4j_user = os.environ.get('NEO4J_USER') or 'neo4j'
neo4j_password = os.environ.get('NEO4J_PASSWORD') or 'password'
def setup_logging():
# Create a logger
logger = logging.getLogger()
logger.setLevel(logging.INFO) # Set the logging level to INFO
# Create console handler and set level to INFO
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setLevel(logging.INFO)
# Create formatter
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
# Add formatter to console handler
console_handler.setFormatter(formatter)
# Add console handler to logger
logger.addHandler(console_handler)
return logger
async def evaluate_qa(graphiti: Graphiti, group_id: str, query: str, answer: str):
search_start = time()
results = await graphiti._search(query, COMBINED_HYBRID_SEARCH_RRF, group_ids=[str(group_id)])
search_end = time()
search_duration = search_end - search_start
facts = [edge.fact for edge in results.edges]
entity_summaries = [node.name + ': ' + node.summary for node in results.nodes]
context = {'facts': facts, 'entity_summaries': entity_summaries, 'query': 'Bob: ' + query}
llm_response = await graphiti.llm_client.generate_response(
prompt_library.eval.qa_prompt(context)
)
response = llm_response.get('ANSWER', '')
eval_context = {
'query': 'Bob: ' + query,
'answer': 'Alice: ' + answer,
'response': 'Alice: ' + response,
}
eval_llm_response = await graphiti.llm_client.generate_response(
prompt_library.eval.eval_prompt(eval_context)
)
eval_response = 1 if eval_llm_response.get('is_correct', False) else 0
return {
'Group id': group_id,
'Question': query,
'Answer': answer,
'Response': response,
'Score': eval_response,
'Search Duration (ms)': search_duration * 1000,
}
async def main():
setup_logging()
graphiti = Graphiti(neo4j_uri, neo4j_user, neo4j_password)
fields = ['Group id', 'Question', 'Answer', 'Response', 'Score', 'Search Duration (ms)']
with open('../data/msc_eval.csv', 'w', newline='') as file:
writer = csv.DictWriter(file, fieldnames=fields)
writer.writeheader()
qa = conversation_q_and_a()[0:500]
i = 0
while i < 500:
qa_chunk = qa[i : i + 20]
group_ids = range(len(qa))[i : i + 20]
results = list(
await asyncio.gather(
*[
evaluate_qa(graphiti, str(group_id), query, answer)
for group_id, (query, answer) in zip(group_ids, qa_chunk)
]
)
)
with open('../data/msc_eval.csv', 'a', newline='') as file:
writer = csv.DictWriter(file, fieldnames=fields)
writer.writerows(results)
i += 20
await graphiti.close()
asyncio.run(main())