mirror of
https://github.com/getzep/graphiti.git
synced 2025-06-27 02:00:02 +00:00
245 lines
9.5 KiB
Python
245 lines
9.5 KiB
Python
"""
|
||
Copyright 2025, Zep Software, Inc.
|
||
|
||
Licensed under the Apache License, Version 2.0 (the "License");
|
||
you may not use this file except in compliance with the License.
|
||
You may obtain a copy of the License at
|
||
|
||
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
||
Unless required by applicable law or agreed to in writing, software
|
||
distributed under the License is distributed on an "AS IS" BASIS,
|
||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
See the License for the specific language governing permissions and
|
||
limitations under the License.
|
||
"""
|
||
|
||
import asyncio
|
||
import json
|
||
import logging
|
||
import os
|
||
from datetime import datetime, timezone
|
||
from logging import INFO
|
||
|
||
from dotenv import load_dotenv
|
||
|
||
from graphiti_core import Graphiti
|
||
from graphiti_core.driver.falkordb_driver import FalkorDriver
|
||
from graphiti_core.nodes import EpisodeType
|
||
from graphiti_core.search.search_config_recipes import NODE_HYBRID_SEARCH_RRF
|
||
|
||
#################################################
|
||
# CONFIGURATION
|
||
#################################################
|
||
# Set up logging and environment variables for
|
||
# connecting to FalkorDB database
|
||
#################################################
|
||
|
||
# Configure logging
|
||
logging.basicConfig(
|
||
level=INFO,
|
||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
||
datefmt='%Y-%m-%d %H:%M:%S',
|
||
)
|
||
logger = logging.getLogger(__name__)
|
||
|
||
load_dotenv()
|
||
|
||
# FalkorDB connection parameters
|
||
# Make sure FalkorDB on premises is running, see https://docs.falkordb.com/
|
||
falkor_uri = os.environ.get('FALKORDB_URI', 'falkor://localhost:6379')
|
||
falkor_user = os.environ.get('FALKORDB_USER', 'falkor')
|
||
falkor_password = os.environ.get('FALKORDB_PASSWORD', '')
|
||
|
||
if not falkor_uri:
|
||
raise ValueError('FALKORDB_URI must be set')
|
||
|
||
|
||
async def main():
|
||
#################################################
|
||
# INITIALIZATION
|
||
#################################################
|
||
# Connect to FalkorDB and set up Graphiti indices
|
||
# This is required before using other Graphiti
|
||
# functionality
|
||
#################################################
|
||
|
||
# Initialize Graphiti with FalkorDB connection
|
||
falkor_driver = FalkorDriver(uri=falkor_uri, user=falkor_user, password=falkor_password)
|
||
graphiti = Graphiti(uri=falkor_uri, graph_driver=falkor_driver)
|
||
|
||
try:
|
||
# Initialize the graph database with graphiti's indices. This only needs to be done once.
|
||
await graphiti.build_indices_and_constraints()
|
||
|
||
#################################################
|
||
# ADDING EPISODES
|
||
#################################################
|
||
# Episodes are the primary units of information
|
||
# in Graphiti. They can be text or structured JSON
|
||
# and are automatically processed to extract entities
|
||
# and relationships.
|
||
#################################################
|
||
|
||
# Example: Add Episodes
|
||
# Episodes list containing both text and JSON episodes
|
||
episodes = [
|
||
{
|
||
'content': 'Kamala Harris is the Attorney General of California. She was previously '
|
||
'the district attorney for San Francisco.',
|
||
'type': EpisodeType.text,
|
||
'description': 'podcast transcript',
|
||
},
|
||
{
|
||
'content': 'As AG, Harris was in office from January 3, 2011 – January 3, 2017',
|
||
'type': EpisodeType.text,
|
||
'description': 'podcast transcript',
|
||
},
|
||
{
|
||
'content': {
|
||
'name': 'Gavin Newsom',
|
||
'position': 'Governor',
|
||
'state': 'California',
|
||
'previous_role': 'Lieutenant Governor',
|
||
'previous_location': 'San Francisco',
|
||
},
|
||
'type': EpisodeType.json,
|
||
'description': 'podcast metadata',
|
||
},
|
||
{
|
||
'content': {
|
||
'name': 'Gavin Newsom',
|
||
'position': 'Governor',
|
||
'term_start': 'January 7, 2019',
|
||
'term_end': 'Present',
|
||
},
|
||
'type': EpisodeType.json,
|
||
'description': 'podcast metadata',
|
||
},
|
||
]
|
||
|
||
# Add episodes to the graph
|
||
for i, episode in enumerate(episodes):
|
||
await graphiti.add_episode(
|
||
name=f'Freakonomics Radio {i}',
|
||
episode_body=episode['content']
|
||
if isinstance(episode['content'], str)
|
||
else json.dumps(episode['content']),
|
||
source=episode['type'],
|
||
source_description=episode['description'],
|
||
reference_time=datetime.now(timezone.utc),
|
||
)
|
||
print(f'Added episode: Freakonomics Radio {i} ({episode["type"].value})')
|
||
|
||
#################################################
|
||
# BASIC SEARCH
|
||
#################################################
|
||
# The simplest way to retrieve relationships (edges)
|
||
# from Graphiti is using the search method, which
|
||
# performs a hybrid search combining semantic
|
||
# similarity and BM25 text retrieval.
|
||
#################################################
|
||
|
||
# Perform a hybrid search combining semantic similarity and BM25 retrieval
|
||
print("\nSearching for: 'Who was the California Attorney General?'")
|
||
results = await graphiti.search('Who was the California Attorney General?')
|
||
|
||
# Print search results
|
||
print('\nSearch Results:')
|
||
for result in results:
|
||
print(f'UUID: {result.uuid}')
|
||
print(f'Fact: {result.fact}')
|
||
if hasattr(result, 'valid_at') and result.valid_at:
|
||
print(f'Valid from: {result.valid_at}')
|
||
if hasattr(result, 'invalid_at') and result.invalid_at:
|
||
print(f'Valid until: {result.invalid_at}')
|
||
print('---')
|
||
|
||
#################################################
|
||
# CENTER NODE SEARCH
|
||
#################################################
|
||
# For more contextually relevant results, you can
|
||
# use a center node to rerank search results based
|
||
# on their graph distance to a specific node
|
||
#################################################
|
||
|
||
# Use the top search result's UUID as the center node for reranking
|
||
if results and len(results) > 0:
|
||
# Get the source node UUID from the top result
|
||
center_node_uuid = results[0].source_node_uuid
|
||
|
||
print('\nReranking search results based on graph distance:')
|
||
print(f'Using center node UUID: {center_node_uuid}')
|
||
|
||
reranked_results = await graphiti.search(
|
||
'Who was the California Attorney General?', center_node_uuid=center_node_uuid
|
||
)
|
||
|
||
# Print reranked search results
|
||
print('\nReranked Search Results:')
|
||
for result in reranked_results:
|
||
print(f'UUID: {result.uuid}')
|
||
print(f'Fact: {result.fact}')
|
||
if hasattr(result, 'valid_at') and result.valid_at:
|
||
print(f'Valid from: {result.valid_at}')
|
||
if hasattr(result, 'invalid_at') and result.invalid_at:
|
||
print(f'Valid until: {result.invalid_at}')
|
||
print('---')
|
||
else:
|
||
print('No results found in the initial search to use as center node.')
|
||
|
||
#################################################
|
||
# NODE SEARCH USING SEARCH RECIPES
|
||
#################################################
|
||
# Graphiti provides predefined search recipes
|
||
# optimized for different search scenarios.
|
||
# Here we use NODE_HYBRID_SEARCH_RRF for retrieving
|
||
# nodes directly instead of edges.
|
||
#################################################
|
||
|
||
# Example: Perform a node search using _search method with standard recipes
|
||
print(
|
||
'\nPerforming node search using _search method with standard recipe NODE_HYBRID_SEARCH_RRF:'
|
||
)
|
||
|
||
# Use a predefined search configuration recipe and modify its limit
|
||
node_search_config = NODE_HYBRID_SEARCH_RRF.model_copy(deep=True)
|
||
node_search_config.limit = 5 # Limit to 5 results
|
||
|
||
# Execute the node search
|
||
node_search_results = await graphiti._search(
|
||
query='California Governor',
|
||
config=node_search_config,
|
||
)
|
||
|
||
# Print node search results
|
||
print('\nNode Search Results:')
|
||
for node in node_search_results.nodes:
|
||
print(f'Node UUID: {node.uuid}')
|
||
print(f'Node Name: {node.name}')
|
||
node_summary = node.summary[:100] + '...' if len(node.summary) > 100 else node.summary
|
||
print(f'Content Summary: {node_summary}')
|
||
print(f'Node Labels: {", ".join(node.labels)}')
|
||
print(f'Created At: {node.created_at}')
|
||
if hasattr(node, 'attributes') and node.attributes:
|
||
print('Attributes:')
|
||
for key, value in node.attributes.items():
|
||
print(f' {key}: {value}')
|
||
print('---')
|
||
|
||
finally:
|
||
#################################################
|
||
# CLEANUP
|
||
#################################################
|
||
# Always close the connection to FalkorDB when
|
||
# finished to properly release resources
|
||
#################################################
|
||
|
||
# Close the connection
|
||
await graphiti.close()
|
||
print('\nConnection closed')
|
||
|
||
|
||
if __name__ == '__main__':
|
||
asyncio.run(main())
|