graphiti/examples/quickstart/quickstart_falkordb.py
Preston Rasmussen fb6d674fc2
update falkordb (#589)
* update falkordb

* updates

* updates
2025-06-16 12:02:08 -04:00

245 lines
9.5 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
Copyright 2025, Zep Software, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import asyncio
import json
import logging
import os
from datetime import datetime, timezone
from logging import INFO
from dotenv import load_dotenv
from graphiti_core import Graphiti
from graphiti_core.driver.falkordb_driver import FalkorDriver
from graphiti_core.nodes import EpisodeType
from graphiti_core.search.search_config_recipes import NODE_HYBRID_SEARCH_RRF
#################################################
# CONFIGURATION
#################################################
# Set up logging and environment variables for
# connecting to FalkorDB database
#################################################
# Configure logging
logging.basicConfig(
level=INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
)
logger = logging.getLogger(__name__)
load_dotenv()
# FalkorDB connection parameters
# Make sure FalkorDB on premises is running, see https://docs.falkordb.com/
falkor_uri = os.environ.get('FALKORDB_URI', 'falkor://localhost:6379')
falkor_user = os.environ.get('FALKORDB_USER', 'falkor')
falkor_password = os.environ.get('FALKORDB_PASSWORD', '')
if not falkor_uri:
raise ValueError('FALKORDB_URI must be set')
async def main():
#################################################
# INITIALIZATION
#################################################
# Connect to FalkorDB and set up Graphiti indices
# This is required before using other Graphiti
# functionality
#################################################
# Initialize Graphiti with FalkorDB connection
falkor_driver = FalkorDriver(uri=falkor_uri, user=falkor_user, password=falkor_password)
graphiti = Graphiti(uri=falkor_uri, graph_driver=falkor_driver)
try:
# Initialize the graph database with graphiti's indices. This only needs to be done once.
await graphiti.build_indices_and_constraints()
#################################################
# ADDING EPISODES
#################################################
# Episodes are the primary units of information
# in Graphiti. They can be text or structured JSON
# and are automatically processed to extract entities
# and relationships.
#################################################
# Example: Add Episodes
# Episodes list containing both text and JSON episodes
episodes = [
{
'content': 'Kamala Harris is the Attorney General of California. She was previously '
'the district attorney for San Francisco.',
'type': EpisodeType.text,
'description': 'podcast transcript',
},
{
'content': 'As AG, Harris was in office from January 3, 2011 January 3, 2017',
'type': EpisodeType.text,
'description': 'podcast transcript',
},
{
'content': {
'name': 'Gavin Newsom',
'position': 'Governor',
'state': 'California',
'previous_role': 'Lieutenant Governor',
'previous_location': 'San Francisco',
},
'type': EpisodeType.json,
'description': 'podcast metadata',
},
{
'content': {
'name': 'Gavin Newsom',
'position': 'Governor',
'term_start': 'January 7, 2019',
'term_end': 'Present',
},
'type': EpisodeType.json,
'description': 'podcast metadata',
},
]
# Add episodes to the graph
for i, episode in enumerate(episodes):
await graphiti.add_episode(
name=f'Freakonomics Radio {i}',
episode_body=episode['content']
if isinstance(episode['content'], str)
else json.dumps(episode['content']),
source=episode['type'],
source_description=episode['description'],
reference_time=datetime.now(timezone.utc),
)
print(f'Added episode: Freakonomics Radio {i} ({episode["type"].value})')
#################################################
# BASIC SEARCH
#################################################
# The simplest way to retrieve relationships (edges)
# from Graphiti is using the search method, which
# performs a hybrid search combining semantic
# similarity and BM25 text retrieval.
#################################################
# Perform a hybrid search combining semantic similarity and BM25 retrieval
print("\nSearching for: 'Who was the California Attorney General?'")
results = await graphiti.search('Who was the California Attorney General?')
# Print search results
print('\nSearch Results:')
for result in results:
print(f'UUID: {result.uuid}')
print(f'Fact: {result.fact}')
if hasattr(result, 'valid_at') and result.valid_at:
print(f'Valid from: {result.valid_at}')
if hasattr(result, 'invalid_at') and result.invalid_at:
print(f'Valid until: {result.invalid_at}')
print('---')
#################################################
# CENTER NODE SEARCH
#################################################
# For more contextually relevant results, you can
# use a center node to rerank search results based
# on their graph distance to a specific node
#################################################
# Use the top search result's UUID as the center node for reranking
if results and len(results) > 0:
# Get the source node UUID from the top result
center_node_uuid = results[0].source_node_uuid
print('\nReranking search results based on graph distance:')
print(f'Using center node UUID: {center_node_uuid}')
reranked_results = await graphiti.search(
'Who was the California Attorney General?', center_node_uuid=center_node_uuid
)
# Print reranked search results
print('\nReranked Search Results:')
for result in reranked_results:
print(f'UUID: {result.uuid}')
print(f'Fact: {result.fact}')
if hasattr(result, 'valid_at') and result.valid_at:
print(f'Valid from: {result.valid_at}')
if hasattr(result, 'invalid_at') and result.invalid_at:
print(f'Valid until: {result.invalid_at}')
print('---')
else:
print('No results found in the initial search to use as center node.')
#################################################
# NODE SEARCH USING SEARCH RECIPES
#################################################
# Graphiti provides predefined search recipes
# optimized for different search scenarios.
# Here we use NODE_HYBRID_SEARCH_RRF for retrieving
# nodes directly instead of edges.
#################################################
# Example: Perform a node search using _search method with standard recipes
print(
'\nPerforming node search using _search method with standard recipe NODE_HYBRID_SEARCH_RRF:'
)
# Use a predefined search configuration recipe and modify its limit
node_search_config = NODE_HYBRID_SEARCH_RRF.model_copy(deep=True)
node_search_config.limit = 5 # Limit to 5 results
# Execute the node search
node_search_results = await graphiti._search(
query='California Governor',
config=node_search_config,
)
# Print node search results
print('\nNode Search Results:')
for node in node_search_results.nodes:
print(f'Node UUID: {node.uuid}')
print(f'Node Name: {node.name}')
node_summary = node.summary[:100] + '...' if len(node.summary) > 100 else node.summary
print(f'Content Summary: {node_summary}')
print(f'Node Labels: {", ".join(node.labels)}')
print(f'Created At: {node.created_at}')
if hasattr(node, 'attributes') and node.attributes:
print('Attributes:')
for key, value in node.attributes.items():
print(f' {key}: {value}')
print('---')
finally:
#################################################
# CLEANUP
#################################################
# Always close the connection to FalkorDB when
# finished to properly release resources
#################################################
# Close the connection
await graphiti.close()
print('\nConnection closed')
if __name__ == '__main__':
asyncio.run(main())