mirror of
https://github.com/getzep/graphiti.git
synced 2025-06-27 02:00:02 +00:00

* create wrappers for azure clients * rremove unused crossencoder client * format * chore: update graphiti-core to 0.12.0rc5 and pydantic to 2.11.5 * Update graphiti_core/llm_client/azure_openai_client.py Co-authored-by: ellipsis-dev[bot] <65095814+ellipsis-dev[bot]@users.noreply.github.com> --------- Co-authored-by: Preston Rasmussen <109292228+prasmussen15@users.noreply.github.com> Co-authored-by: ellipsis-dev[bot] <65095814+ellipsis-dev[bot]@users.noreply.github.com>
65 lines
2.3 KiB
Python
65 lines
2.3 KiB
Python
"""
|
|
Copyright 2024, Zep Software, Inc.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
"""
|
|
|
|
import logging
|
|
from typing import Any
|
|
|
|
from openai import AsyncAzureOpenAI
|
|
|
|
from .client import EmbedderClient
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class AzureOpenAIEmbedderClient(EmbedderClient):
|
|
"""Wrapper class for AsyncAzureOpenAI that implements the EmbedderClient interface."""
|
|
|
|
def __init__(self, azure_client: AsyncAzureOpenAI, model: str = 'text-embedding-3-small'):
|
|
self.azure_client = azure_client
|
|
self.model = model
|
|
|
|
async def create(self, input_data: str | list[str] | Any) -> list[float]:
|
|
"""Create embeddings using Azure OpenAI client."""
|
|
try:
|
|
# Handle different input types
|
|
if isinstance(input_data, str):
|
|
text_input = [input_data]
|
|
elif isinstance(input_data, list) and all(isinstance(item, str) for item in input_data):
|
|
text_input = input_data
|
|
else:
|
|
# Convert to string list for other types
|
|
text_input = [str(input_data)]
|
|
|
|
response = await self.azure_client.embeddings.create(model=self.model, input=text_input)
|
|
|
|
# Return the first embedding as a list of floats
|
|
return response.data[0].embedding
|
|
except Exception as e:
|
|
logger.error(f'Error in Azure OpenAI embedding: {e}')
|
|
raise
|
|
|
|
async def create_batch(self, input_data_list: list[str]) -> list[list[float]]:
|
|
"""Create batch embeddings using Azure OpenAI client."""
|
|
try:
|
|
response = await self.azure_client.embeddings.create(
|
|
model=self.model, input=input_data_list
|
|
)
|
|
|
|
return [embedding.embedding for embedding in response.data]
|
|
except Exception as e:
|
|
logger.error(f'Error in Azure OpenAI batch embedding: {e}')
|
|
raise
|