Preston Rasmussen 0b94e0e603
Bulk embed (#403)
* add batch embeddings

* bulk edge and node embeddings

* update embeddings during add_episode

* Update graphiti_core/embedder/client.py

Co-authored-by: ellipsis-dev[bot] <65095814+ellipsis-dev[bot]@users.noreply.github.com>

* mypy

---------

Co-authored-by: ellipsis-dev[bot] <65095814+ellipsis-dev[bot]@users.noreply.github.com>
2025-04-26 22:09:12 -04:00

67 lines
2.1 KiB
Python

"""
Copyright 2024, Zep Software, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from collections.abc import Iterable
from openai import AsyncAzureOpenAI, AsyncOpenAI
from openai.types import EmbeddingModel
from .client import EmbedderClient, EmbedderConfig
DEFAULT_EMBEDDING_MODEL = 'text-embedding-3-small'
class OpenAIEmbedderConfig(EmbedderConfig):
embedding_model: EmbeddingModel | str = DEFAULT_EMBEDDING_MODEL
api_key: str | None = None
base_url: str | None = None
class OpenAIEmbedder(EmbedderClient):
"""
OpenAI Embedder Client
This client supports both AsyncOpenAI and AsyncAzureOpenAI clients.
"""
def __init__(
self,
config: OpenAIEmbedderConfig | None = None,
client: AsyncOpenAI | AsyncAzureOpenAI | None = None,
):
if config is None:
config = OpenAIEmbedderConfig()
self.config = config
if client is not None:
self.client = client
else:
self.client = AsyncOpenAI(api_key=config.api_key, base_url=config.base_url)
async def create(
self, input_data: str | list[str] | Iterable[int] | Iterable[Iterable[int]]
) -> list[float]:
result = await self.client.embeddings.create(
input=input_data, model=self.config.embedding_model
)
return result.data[0].embedding[: self.config.embedding_dim]
async def create_batch(self, input_data_list: list[str]) -> list[list[float]]:
result = await self.client.embeddings.create(
input=input_data_list, model=self.config.embedding_model
)
return [embedding.embedding[: self.config.embedding_dim] for embedding in result.data]