Daniel Chalef 14d5ce0b36
Override default max tokens for Anthropic and Groq clients (#143)
* Override default max tokens for Anthropic and Groq clients

* Override default max tokens for Anthropic and Groq clients

* Override default max tokens for Anthropic and Groq clients
2024-09-22 11:33:54 -07:00

73 lines
2.4 KiB
Python

"""
Copyright 2024, Zep Software, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import json
import logging
import typing
import groq
from groq import AsyncGroq
from groq.types.chat import ChatCompletionMessageParam
from openai import AsyncOpenAI
from ..prompts.models import Message
from .client import LLMClient
from .config import LLMConfig
from .errors import RateLimitError
logger = logging.getLogger(__name__)
DEFAULT_MODEL = 'llama-3.1-70b-versatile'
DEFAULT_MAX_TOKENS = 2048
class GroqClient(LLMClient):
def __init__(self, config: LLMConfig | None = None, cache: bool = False):
if config is None:
config = LLMConfig(max_tokens=DEFAULT_MAX_TOKENS)
elif config.max_tokens is None:
config.max_tokens = DEFAULT_MAX_TOKENS
super().__init__(config, cache)
self.client = AsyncGroq(api_key=config.api_key)
def get_embedder(self) -> typing.Any:
openai_client = AsyncOpenAI()
return openai_client.embeddings
async def _generate_response(self, messages: list[Message]) -> dict[str, typing.Any]:
msgs: list[ChatCompletionMessageParam] = []
for m in messages:
if m.role == 'user':
msgs.append({'role': 'user', 'content': m.content})
elif m.role == 'system':
msgs.append({'role': 'system', 'content': m.content})
try:
response = await self.client.chat.completions.create(
model=self.model or DEFAULT_MODEL,
messages=msgs,
temperature=self.temperature,
max_tokens=self.max_tokens,
response_format={'type': 'json_object'},
)
result = response.choices[0].message.content or ''
return json.loads(result)
except groq.RateLimitError as e:
raise RateLimitError from e
except Exception as e:
logger.error(f'Error in generating LLM response: {e}')
raise