graphiti/core/nodes.py
Preston Rasmussen d6add504bd
Create Bulk Add Episode for faster processing (#9)
* benchmark logging

* load schema updates

* add extract bulk nodes and edges

* updated bulk calls

* compression updates

* bulk updates

* bulk logic first pass

* updated bulk process

* debug

* remove exact names first

* cleaned up prompt

* fix bad merge

* update

* fix merge issues
2024-08-21 12:03:32 -04:00

107 lines
3.3 KiB
Python

from abc import ABC, abstractmethod
from time import time
from datetime import datetime
from uuid import uuid4
from openai import OpenAI
from pydantic import BaseModel, Field
from neo4j import AsyncDriver
import logging
from core.llm_client.config import EMBEDDING_DIM
logger = logging.getLogger(__name__)
class Node(BaseModel, ABC):
uuid: str = Field(default_factory=lambda: uuid4().hex)
name: str
labels: list[str] = Field(default_factory=list)
created_at: datetime
@abstractmethod
async def save(self, driver: AsyncDriver): ...
def __hash__(self):
return hash(self.uuid)
def __eq__(self, other):
if isinstance(other, Node):
return self.uuid == other.uuid
return False
class EpisodicNode(Node):
source: str = Field(description="source type")
source_description: str = Field(description="description of the data source")
content: str = Field(description="raw episode data")
valid_at: datetime = Field(
description="datetime of when the original document was created",
)
entity_edges: list[str] = Field(
description="list of entity edges referenced in this episode",
default_factory=list,
)
async def save(self, driver: AsyncDriver):
result = await driver.execute_query(
"""
MERGE (n:Episodic {uuid: $uuid})
SET n = {uuid: $uuid, name: $name, source_description: $source_description, source: $source, content: $content,
entity_edges: $entity_edges, created_at: $created_at, valid_at: $valid_at}
RETURN n.uuid AS uuid""",
uuid=self.uuid,
name=self.name,
source_description=self.source_description,
content=self.content,
entity_edges=self.entity_edges,
created_at=self.created_at,
valid_at=self.valid_at,
source=self.source,
_database="neo4j",
)
logger.info(f"Saved Node to neo4j: {self.uuid}")
return result
class EntityNode(Node):
name_embedding: list[float] | None = Field(
default=None, description="embedding of the name"
)
summary: str = Field(
description="regional summary of surrounding edges", default_factory=str
)
async def update_summary(self, driver: AsyncDriver): ...
async def refresh_summary(self, driver: AsyncDriver, llm_client: OpenAI): ...
async def generate_name_embedding(self, embedder, model="text-embedding-3-small"):
start = time()
text = self.name.replace("\n", " ")
embedding = (await embedder.create(input=[text], model=model)).data[0].embedding
self.name_embedding = embedding[:EMBEDDING_DIM]
end = time()
logger.info(f"embedded {text} in {end-start} ms")
return embedding
async def save(self, driver: AsyncDriver):
result = await driver.execute_query(
"""
MERGE (n:Entity {uuid: $uuid})
SET n = {uuid: $uuid, name: $name, name_embedding: $name_embedding, summary: $summary, created_at: $created_at}
RETURN n.uuid AS uuid""",
uuid=self.uuid,
name=self.name,
summary=self.summary,
name_embedding=self.name_embedding,
created_at=self.created_at,
)
logger.info(f"Saved Node to neo4j: {self.uuid}")
return result