graphiti/core/search/search.py
Daniel Chalef 6d52be49f4
Add Apache License 2.0 boilerplate to all Python files (#30)
* Add Apache License 2.0 boilerplate to all Python files

---

For more details, open the [Copilot Workspace session](https://copilot-workspace.githubnext.com/getzep/graphiti?shareId=XXXX-XXXX-XXXX-XXXX).

* format

* format

* chore: Add Ellipsis configuration file
2024-08-23 16:01:33 -04:00

118 lines
3.5 KiB
Python

"""
Copyright 2024, Zep Software, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import logging
from datetime import datetime
from time import time
from neo4j import AsyncDriver
from pydantic import BaseModel
from core.edges import EntityEdge
from core.llm_client.config import EMBEDDING_DIM
from core.nodes import EntityNode, EpisodicNode
from core.search.search_utils import (
edge_fulltext_search,
edge_similarity_search,
get_mentioned_nodes,
rrf,
)
from core.utils import retrieve_episodes
from core.utils.maintenance.graph_data_operations import EPISODE_WINDOW_LEN
logger = logging.getLogger(__name__)
class SearchConfig(BaseModel):
num_results: int = 10
num_episodes: int = EPISODE_WINDOW_LEN
similarity_search: str = 'cosine'
text_search: str = 'BM25'
reranker: str = 'rrf'
class SearchResults(BaseModel):
episodes: list[EpisodicNode]
nodes: list[EntityNode]
edges: list[EntityEdge]
async def hybrid_search(
driver: AsyncDriver, embedder, query: str, timestamp: datetime, config: SearchConfig
) -> SearchResults:
start = time()
episodes = []
nodes = []
edges = []
search_results = []
if config.num_episodes > 0:
episodes.extend(await retrieve_episodes(driver, timestamp))
nodes.extend(await get_mentioned_nodes(driver, episodes))
if config.text_search == 'BM25':
text_search = await edge_fulltext_search(query, driver)
search_results.append(text_search)
if config.similarity_search == 'cosine':
query_text = query.replace('\n', ' ')
search_vector = (
(await embedder.create(input=[query_text], model='text-embedding-3-small'))
.data[0]
.embedding[:EMBEDDING_DIM]
)
similarity_search = await edge_similarity_search(search_vector, driver)
search_results.append(similarity_search)
if len(search_results) == 1:
edges = search_results[0]
elif len(search_results) > 1 and config.reranker != 'rrf':
logger.exception('Multiple searches enabled without a reranker')
raise Exception('Multiple searches enabled without a reranker')
elif config.reranker == 'rrf':
edge_uuid_map = {}
search_result_uuids = []
logger.info([[edge.fact for edge in result] for result in search_results])
for result in search_results:
result_uuids = []
for edge in result:
result_uuids.append(edge.uuid)
edge_uuid_map[edge.uuid] = edge
search_result_uuids.append(result_uuids)
search_result_uuids = [[edge.uuid for edge in result] for result in search_results]
reranked_uuids = rrf(search_result_uuids)
reranked_edges = [edge_uuid_map[uuid] for uuid in reranked_uuids]
edges.extend(reranked_edges)
context = SearchResults(episodes=episodes, nodes=nodes, edges=edges)
end = time()
logger.info(f'search returned context for query {query} in {(end - start) * 1000} ms')
return context