graphiti/graphiti_core/llm_client/openai_client.py
Daniel Chalef 895afc7be1
implement diskcache (#39)
* chore: Add romeo runner

* fix: Linter

* wip

* wip dump

* chore: Update romeo parser

* chore: Anthropic model fix

* wip

* allbirds

* allbirds runner

* format

* wip

* wip

* mypy updates

* update

* remove r

* update tests

* format

* wip

* chore: Strategically update the message

* rebase and fix import issues

* Update package imports for graphiti_core in examples and utils

* nits

* chore: Update OpenAI GPT-4o model to gpt-4o-2024-08-06

* implement groq

* improvments & linting

* cleanup and nits

* Refactor package imports for graphiti_core in examples and utils

* Refactor package imports for graphiti_core in examples and utils

* implement diskcache

* remove debug stuff

* log cache hit when debugging only

* Improve LLM config. Fix bugs (#41)

Refactor LLMConfig class to allow None values for model and base_url

* chore: Resolve mc

---------

Co-authored-by: paulpaliychuk <pavlo.paliychuk.ca@gmail.com>
Co-authored-by: prestonrasmussen <prasmuss15@gmail.com>
2024-08-26 13:13:05 -04:00

66 lines
2.2 KiB
Python

"""
Copyright 2024, Zep Software, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import json
import logging
import typing
from openai import AsyncOpenAI
from openai.types.chat import ChatCompletionMessageParam
from ..prompts.models import Message
from .client import LLMClient
from .config import LLMConfig
logger = logging.getLogger(__name__)
DEFAULT_MODEL = 'gpt-4o-2024-08-06'
class OpenAIClient(LLMClient):
def __init__(self, config: LLMConfig | None = None, cache: bool = False):
if config is None:
config = LLMConfig()
super().__init__(config, cache)
self.client = AsyncOpenAI(api_key=config.api_key, base_url=config.base_url)
def get_embedder(self) -> typing.Any:
return self.client.embeddings
async def _generate_response(self, messages: list[Message]) -> dict[str, typing.Any]:
openai_messages: list[ChatCompletionMessageParam] = []
for m in messages:
if m.role == 'user':
openai_messages.append({'role': 'user', 'content': m.content})
elif m.role == 'system':
openai_messages.append({'role': 'system', 'content': m.content})
try:
response = await self.client.chat.completions.create(
model=self.model or DEFAULT_MODEL,
messages=openai_messages,
temperature=self.temperature,
max_tokens=self.max_tokens,
response_format={'type': 'json_object'},
)
result = response.choices[0].message.content or ''
return json.loads(result)
except Exception as e:
print(openai_messages)
logger.error(f'Error in generating LLM response: {e}')
raise