graphiti/graphiti_core/graphiti.py
Daniel Chalef a6bb9b3eca
Add group ID validation and error handling (#618)
- Introduced `GroupIdValidationError` to handle invalid group ID formats.
- Added `validate_group_id` function to check that group IDs contain only alphanumeric characters, dashes, or underscores.
- Integrated `validate_group_id` checks in the `Graphiti` class to ensure group IDs are validated during processing.
2025-06-24 09:33:54 -07:00

813 lines
30 KiB
Python

"""
Copyright 2024, Zep Software, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import logging
from datetime import datetime
from time import time
from dotenv import load_dotenv
from pydantic import BaseModel
from typing_extensions import LiteralString
from graphiti_core.cross_encoder.client import CrossEncoderClient
from graphiti_core.cross_encoder.openai_reranker_client import OpenAIRerankerClient
from graphiti_core.driver.driver import GraphDriver
from graphiti_core.driver.neo4j_driver import Neo4jDriver
from graphiti_core.edges import EntityEdge, EpisodicEdge
from graphiti_core.embedder import EmbedderClient, OpenAIEmbedder
from graphiti_core.graphiti_types import GraphitiClients
from graphiti_core.helpers import DEFAULT_DATABASE, semaphore_gather, validate_group_id
from graphiti_core.llm_client import LLMClient, OpenAIClient
from graphiti_core.nodes import CommunityNode, EntityNode, EpisodeType, EpisodicNode
from graphiti_core.search.search import SearchConfig, search
from graphiti_core.search.search_config import DEFAULT_SEARCH_LIMIT, SearchResults
from graphiti_core.search.search_config_recipes import (
COMBINED_HYBRID_SEARCH_CROSS_ENCODER,
EDGE_HYBRID_SEARCH_NODE_DISTANCE,
EDGE_HYBRID_SEARCH_RRF,
)
from graphiti_core.search.search_filters import SearchFilters
from graphiti_core.search.search_utils import (
RELEVANT_SCHEMA_LIMIT,
get_edge_invalidation_candidates,
get_mentioned_nodes,
get_relevant_edges,
)
from graphiti_core.utils.bulk_utils import (
RawEpisode,
add_nodes_and_edges_bulk,
dedupe_edges_bulk,
dedupe_nodes_bulk,
extract_edge_dates_bulk,
extract_nodes_and_edges_bulk,
resolve_edge_pointers,
retrieve_previous_episodes_bulk,
)
from graphiti_core.utils.datetime_utils import utc_now
from graphiti_core.utils.maintenance.community_operations import (
build_communities,
remove_communities,
update_community,
)
from graphiti_core.utils.maintenance.edge_operations import (
build_duplicate_of_edges,
build_episodic_edges,
extract_edges,
resolve_extracted_edge,
resolve_extracted_edges,
)
from graphiti_core.utils.maintenance.graph_data_operations import (
EPISODE_WINDOW_LEN,
build_indices_and_constraints,
retrieve_episodes,
)
from graphiti_core.utils.maintenance.node_operations import (
extract_attributes_from_nodes,
extract_nodes,
resolve_extracted_nodes,
)
from graphiti_core.utils.ontology_utils.entity_types_utils import validate_entity_types
logger = logging.getLogger(__name__)
load_dotenv()
class AddEpisodeResults(BaseModel):
episode: EpisodicNode
nodes: list[EntityNode]
edges: list[EntityEdge]
class Graphiti:
def __init__(
self,
uri: str,
user: str | None = None,
password: str | None = None,
llm_client: LLMClient | None = None,
embedder: EmbedderClient | None = None,
cross_encoder: CrossEncoderClient | None = None,
store_raw_episode_content: bool = True,
graph_driver: GraphDriver | None = None,
max_coroutines: int | None = None,
):
"""
Initialize a Graphiti instance.
This constructor sets up a connection to the Neo4j database and initializes
the LLM client for natural language processing tasks.
Parameters
----------
uri : str
The URI of the Neo4j database.
user : str
The username for authenticating with the Neo4j database.
password : str
The password for authenticating with the Neo4j database.
llm_client : LLMClient | None, optional
An instance of LLMClient for natural language processing tasks.
If not provided, a default OpenAIClient will be initialized.
embedder : EmbedderClient | None, optional
An instance of EmbedderClient for embedding tasks.
If not provided, a default OpenAIEmbedder will be initialized.
cross_encoder : CrossEncoderClient | None, optional
An instance of CrossEncoderClient for reranking tasks.
If not provided, a default OpenAIRerankerClient will be initialized.
store_raw_episode_content : bool, optional
Whether to store the raw content of episodes. Defaults to True.
graph_driver : GraphDriver | None, optional
An instance of GraphDriver for database operations.
If not provided, a default Neo4jDriver will be initialized.
max_coroutines : int | None, optional
The maximum number of concurrent operations allowed. Overrides SEMAPHORE_LIMIT set in the environment.
If not set, the Graphiti default is used.
Returns
-------
None
Notes
-----
This method establishes a connection to the Neo4j database using the provided
credentials. It also sets up the LLM client, either using the provided client
or by creating a default OpenAIClient.
The default database name is set to 'neo4j'. If a different database name
is required, it should be specified in the URI or set separately after
initialization.
The OpenAI API key is expected to be set in the environment variables.
Make sure to set the OPENAI_API_KEY environment variable before initializing
Graphiti if you're using the default OpenAIClient.
"""
self.driver = graph_driver if graph_driver else Neo4jDriver(uri, user, password)
self.database = DEFAULT_DATABASE
self.store_raw_episode_content = store_raw_episode_content
self.max_coroutines = max_coroutines
if llm_client:
self.llm_client = llm_client
else:
self.llm_client = OpenAIClient()
if embedder:
self.embedder = embedder
else:
self.embedder = OpenAIEmbedder()
if cross_encoder:
self.cross_encoder = cross_encoder
else:
self.cross_encoder = OpenAIRerankerClient()
self.clients = GraphitiClients(
driver=self.driver,
llm_client=self.llm_client,
embedder=self.embedder,
cross_encoder=self.cross_encoder,
)
async def close(self):
"""
Close the connection to the Neo4j database.
This method safely closes the driver connection to the Neo4j database.
It should be called when the Graphiti instance is no longer needed or
when the application is shutting down.
Parameters
----------
self
Returns
-------
None
Notes
-----
It's important to close the driver connection to release system resources
and ensure that all pending transactions are completed or rolled back.
This method should be called as part of a cleanup process, potentially
in a context manager or a shutdown hook.
Example:
graphiti = Graphiti(uri, user, password)
try:
# Use graphiti...
finally:
graphiti.close()
"""
await self.driver.close()
async def build_indices_and_constraints(self, delete_existing: bool = False):
"""
Build indices and constraints in the Neo4j database.
This method sets up the necessary indices and constraints in the Neo4j database
to optimize query performance and ensure data integrity for the knowledge graph.
Parameters
----------
self
delete_existing : bool, optional
Whether to clear existing indices before creating new ones.
Returns
-------
None
Notes
-----
This method should typically be called once during the initial setup of the
knowledge graph or when updating the database schema. It uses the
`build_indices_and_constraints` function from the
`graphiti_core.utils.maintenance.graph_data_operations` module to perform
the actual database operations.
The specific indices and constraints created depend on the implementation
of the `build_indices_and_constraints` function. Refer to that function's
documentation for details on the exact database schema modifications.
Caution: Running this method on a large existing database may take some time
and could impact database performance during execution.
"""
await build_indices_and_constraints(self.driver, delete_existing)
async def retrieve_episodes(
self,
reference_time: datetime,
last_n: int = EPISODE_WINDOW_LEN,
group_ids: list[str] | None = None,
source: EpisodeType | None = None,
) -> list[EpisodicNode]:
"""
Retrieve the last n episodic nodes from the graph.
This method fetches a specified number of the most recent episodic nodes
from the graph, relative to the given reference time.
Parameters
----------
reference_time : datetime
The reference time to retrieve episodes before.
last_n : int, optional
The number of episodes to retrieve. Defaults to EPISODE_WINDOW_LEN.
group_ids : list[str | None], optional
The group ids to return data from.
Returns
-------
list[EpisodicNode]
A list of the most recent EpisodicNode objects.
Notes
-----
The actual retrieval is performed by the `retrieve_episodes` function
from the `graphiti_core.utils` module.
"""
return await retrieve_episodes(self.driver, reference_time, last_n, group_ids, source)
async def add_episode(
self,
name: str,
episode_body: str,
source_description: str,
reference_time: datetime,
source: EpisodeType = EpisodeType.message,
group_id: str = '',
uuid: str | None = None,
update_communities: bool = False,
entity_types: dict[str, BaseModel] | None = None,
previous_episode_uuids: list[str] | None = None,
edge_types: dict[str, BaseModel] | None = None,
edge_type_map: dict[tuple[str, str], list[str]] | None = None,
) -> AddEpisodeResults:
"""
Process an episode and update the graph.
This method extracts information from the episode, creates nodes and edges,
and updates the graph database accordingly.
Parameters
----------
name : str
The name of the episode.
episode_body : str
The content of the episode.
source_description : str
A description of the episode's source.
reference_time : datetime
The reference time for the episode.
source : EpisodeType, optional
The type of the episode. Defaults to EpisodeType.message.
group_id : str | None
An id for the graph partition the episode is a part of.
uuid : str | None
Optional uuid of the episode.
update_communities : bool
Optional. Whether to update communities with new node information
previous_episode_uuids : list[str] | None
Optional. list of episode uuids to use as the previous episodes. If this is not provided,
the most recent episodes by created_at date will be used.
Returns
-------
None
Notes
-----
This method performs several steps including node extraction, edge extraction,
deduplication, and database updates. It also handles embedding generation
and edge invalidation.
It is recommended to run this method as a background process, such as in a queue.
It's important that each episode is added sequentially and awaited before adding
the next one. For web applications, consider using FastAPI's background tasks
or a dedicated task queue like Celery for this purpose.
Example using FastAPI background tasks:
@app.post("/add_episode")
async def add_episode_endpoint(episode_data: EpisodeData):
background_tasks.add_task(graphiti.add_episode, **episode_data.dict())
return {"message": "Episode processing started"}
"""
try:
start = time()
now = utc_now()
validate_entity_types(entity_types)
validate_group_id(group_id)
previous_episodes = (
await self.retrieve_episodes(
reference_time,
last_n=RELEVANT_SCHEMA_LIMIT,
group_ids=[group_id],
source=source,
)
if previous_episode_uuids is None
else await EpisodicNode.get_by_uuids(self.driver, previous_episode_uuids)
)
episode = (
await EpisodicNode.get_by_uuid(self.driver, uuid)
if uuid is not None
else EpisodicNode(
name=name,
group_id=group_id,
labels=[],
source=source,
content=episode_body,
source_description=source_description,
created_at=now,
valid_at=reference_time,
)
)
# Create default edge type map
edge_type_map_default = (
{('Entity', 'Entity'): list(edge_types.keys())}
if edge_types is not None
else {('Entity', 'Entity'): []}
)
# Extract entities as nodes
extracted_nodes = await extract_nodes(
self.clients, episode, previous_episodes, entity_types
)
# Extract edges and resolve nodes
(nodes, uuid_map, node_duplicates), extracted_edges = await semaphore_gather(
resolve_extracted_nodes(
self.clients,
extracted_nodes,
episode,
previous_episodes,
entity_types,
),
extract_edges(
self.clients,
episode,
extracted_nodes,
previous_episodes,
edge_type_map or edge_type_map_default,
group_id,
edge_types,
),
max_coroutines=self.max_coroutines,
)
edges = resolve_edge_pointers(extracted_edges, uuid_map)
(resolved_edges, invalidated_edges), hydrated_nodes = await semaphore_gather(
resolve_extracted_edges(
self.clients,
edges,
episode,
nodes,
edge_types or {},
edge_type_map or edge_type_map_default,
),
extract_attributes_from_nodes(
self.clients, nodes, episode, previous_episodes, entity_types
),
max_coroutines=self.max_coroutines,
)
duplicate_of_edges = build_duplicate_of_edges(episode, now, node_duplicates)
entity_edges = resolved_edges + invalidated_edges + duplicate_of_edges
episodic_edges = build_episodic_edges(nodes, episode, now)
episode.entity_edges = [edge.uuid for edge in entity_edges]
if not self.store_raw_episode_content:
episode.content = ''
await add_nodes_and_edges_bulk(
self.driver, [episode], episodic_edges, hydrated_nodes, entity_edges, self.embedder
)
# Update any communities
if update_communities:
await semaphore_gather(
*[
update_community(self.driver, self.llm_client, self.embedder, node)
for node in nodes
],
max_coroutines=self.max_coroutines,
)
end = time()
logger.info(f'Completed add_episode in {(end - start) * 1000} ms')
return AddEpisodeResults(episode=episode, nodes=nodes, edges=entity_edges)
except Exception as e:
raise e
#### WIP: USE AT YOUR OWN RISK ####
async def add_episode_bulk(self, bulk_episodes: list[RawEpisode], group_id: str = ''):
"""
Process multiple episodes in bulk and update the graph.
This method extracts information from multiple episodes, creates nodes and edges,
and updates the graph database accordingly, all in a single batch operation.
Parameters
----------
bulk_episodes : list[RawEpisode]
A list of RawEpisode objects to be processed and added to the graph.
group_id : str | None
An id for the graph partition the episode is a part of.
Returns
-------
None
Notes
-----
This method performs several steps including:
- Saving all episodes to the database
- Retrieving previous episode context for each new episode
- Extracting nodes and edges from all episodes
- Generating embeddings for nodes and edges
- Deduplicating nodes and edges
- Saving nodes, episodic edges, and entity edges to the knowledge graph
This bulk operation is designed for efficiency when processing multiple episodes
at once. However, it's important to ensure that the bulk operation doesn't
overwhelm system resources. Consider implementing rate limiting or chunking for
very large batches of episodes.
Important: This method does not perform edge invalidation or date extraction steps.
If these operations are required, use the `add_episode` method instead for each
individual episode.
"""
try:
start = time()
now = utc_now()
validate_group_id(group_id)
episodes = [
EpisodicNode(
name=episode.name,
labels=[],
source=episode.source,
content=episode.content,
source_description=episode.source_description,
group_id=group_id,
created_at=now,
valid_at=episode.reference_time,
)
for episode in bulk_episodes
]
# Save all the episodes
await semaphore_gather(
*[episode.save(self.driver) for episode in episodes],
max_coroutines=self.max_coroutines,
)
# Get previous episode context for each episode
episode_pairs = await retrieve_previous_episodes_bulk(self.driver, episodes)
# Extract all nodes and edges
(
extracted_nodes,
extracted_edges,
episodic_edges,
) = await extract_nodes_and_edges_bulk(self.clients, episode_pairs)
# Generate embeddings
await semaphore_gather(
*[node.generate_name_embedding(self.embedder) for node in extracted_nodes],
*[edge.generate_embedding(self.embedder) for edge in extracted_edges],
max_coroutines=self.max_coroutines,
)
# Dedupe extracted nodes, compress extracted edges
(nodes, uuid_map), extracted_edges_timestamped = await semaphore_gather(
dedupe_nodes_bulk(self.driver, self.llm_client, extracted_nodes),
extract_edge_dates_bulk(self.llm_client, extracted_edges, episode_pairs),
max_coroutines=self.max_coroutines,
)
# save nodes to KG
await semaphore_gather(
*[node.save(self.driver) for node in nodes],
max_coroutines=self.max_coroutines,
)
# re-map edge pointers so that they don't point to discard dupe nodes
extracted_edges_with_resolved_pointers: list[EntityEdge] = resolve_edge_pointers(
extracted_edges_timestamped, uuid_map
)
episodic_edges_with_resolved_pointers: list[EpisodicEdge] = resolve_edge_pointers(
episodic_edges, uuid_map
)
# save episodic edges to KG
await semaphore_gather(
*[edge.save(self.driver) for edge in episodic_edges_with_resolved_pointers],
max_coroutines=self.max_coroutines,
)
# Dedupe extracted edges
edges = await dedupe_edges_bulk(
self.driver, self.llm_client, extracted_edges_with_resolved_pointers
)
logger.debug(f'extracted edge length: {len(edges)}')
# invalidate edges
# save edges to KG
await semaphore_gather(
*[edge.save(self.driver) for edge in edges],
max_coroutines=self.max_coroutines,
)
end = time()
logger.info(f'Completed add_episode_bulk in {(end - start) * 1000} ms')
except Exception as e:
raise e
async def build_communities(self, group_ids: list[str] | None = None) -> list[CommunityNode]:
"""
Use a community clustering algorithm to find communities of nodes. Create community nodes summarising
the content of these communities.
----------
query : list[str] | None
Optional. Create communities only for the listed group_ids. If blank the entire graph will be used.
"""
# Clear existing communities
await remove_communities(self.driver)
community_nodes, community_edges = await build_communities(
self.driver, self.llm_client, group_ids
)
await semaphore_gather(
*[node.generate_name_embedding(self.embedder) for node in community_nodes],
max_coroutines=self.max_coroutines,
)
await semaphore_gather(
*[node.save(self.driver) for node in community_nodes],
max_coroutines=self.max_coroutines,
)
await semaphore_gather(
*[edge.save(self.driver) for edge in community_edges],
max_coroutines=self.max_coroutines,
)
return community_nodes
async def search(
self,
query: str,
center_node_uuid: str | None = None,
group_ids: list[str] | None = None,
num_results=DEFAULT_SEARCH_LIMIT,
search_filter: SearchFilters | None = None,
) -> list[EntityEdge]:
"""
Perform a hybrid search on the knowledge graph.
This method executes a search query on the graph, combining vector and
text-based search techniques to retrieve relevant facts, returning the edges as a string.
This is our basic out-of-the-box search, for more robust results we recommend using our more advanced
search method graphiti.search_().
Parameters
----------
query : str
The search query string.
center_node_uuid: str, optional
Facts will be reranked based on proximity to this node
group_ids : list[str | None] | None, optional
The graph partitions to return data from.
num_results : int, optional
The maximum number of results to return. Defaults to 10.
Returns
-------
list
A list of EntityEdge objects that are relevant to the search query.
Notes
-----
This method uses a SearchConfig with num_episodes set to 0 and
num_results set to the provided num_results parameter.
The search is performed using the current date and time as the reference
point for temporal relevance.
"""
search_config = (
EDGE_HYBRID_SEARCH_RRF if center_node_uuid is None else EDGE_HYBRID_SEARCH_NODE_DISTANCE
)
search_config.limit = num_results
edges = (
await search(
self.clients,
query,
group_ids,
search_config,
search_filter if search_filter is not None else SearchFilters(),
center_node_uuid,
)
).edges
return edges
async def _search(
self,
query: str,
config: SearchConfig,
group_ids: list[str] | None = None,
center_node_uuid: str | None = None,
bfs_origin_node_uuids: list[str] | None = None,
search_filter: SearchFilters | None = None,
) -> SearchResults:
"""DEPRECATED"""
return await self.search_(
query, config, group_ids, center_node_uuid, bfs_origin_node_uuids, search_filter
)
async def search_(
self,
query: str,
config: SearchConfig = COMBINED_HYBRID_SEARCH_CROSS_ENCODER,
group_ids: list[str] | None = None,
center_node_uuid: str | None = None,
bfs_origin_node_uuids: list[str] | None = None,
search_filter: SearchFilters | None = None,
) -> SearchResults:
"""search_ (replaces _search) is our advanced search method that returns Graph objects (nodes and edges) rather
than a list of facts. This endpoint allows the end user to utilize more advanced features such as filters and
different search and reranker methodologies across different layers in the graph.
For different config recipes refer to search/search_config_recipes.
"""
return await search(
self.clients,
query,
group_ids,
config,
search_filter if search_filter is not None else SearchFilters(),
center_node_uuid,
bfs_origin_node_uuids,
)
async def get_nodes_and_edges_by_episode(self, episode_uuids: list[str]) -> SearchResults:
episodes = await EpisodicNode.get_by_uuids(self.driver, episode_uuids)
edges_list = await semaphore_gather(
*[EntityEdge.get_by_uuids(self.driver, episode.entity_edges) for episode in episodes],
max_coroutines=self.max_coroutines,
)
edges: list[EntityEdge] = [edge for lst in edges_list for edge in lst]
nodes = await get_mentioned_nodes(self.driver, episodes)
return SearchResults(edges=edges, nodes=nodes, episodes=[], communities=[])
async def add_triplet(self, source_node: EntityNode, edge: EntityEdge, target_node: EntityNode):
if source_node.name_embedding is None:
await source_node.generate_name_embedding(self.embedder)
if target_node.name_embedding is None:
await target_node.generate_name_embedding(self.embedder)
if edge.fact_embedding is None:
await edge.generate_embedding(self.embedder)
resolved_nodes, uuid_map, _ = await resolve_extracted_nodes(
self.clients,
[source_node, target_node],
)
updated_edge = resolve_edge_pointers([edge], uuid_map)[0]
related_edges = (await get_relevant_edges(self.driver, [updated_edge], SearchFilters()))[0]
existing_edges = (
await get_edge_invalidation_candidates(self.driver, [updated_edge], SearchFilters())
)[0]
resolved_edge, invalidated_edges = await resolve_extracted_edge(
self.llm_client,
updated_edge,
related_edges,
existing_edges,
EpisodicNode(
name='',
source=EpisodeType.text,
source_description='',
content='',
valid_at=edge.valid_at or utc_now(),
entity_edges=[],
group_id=edge.group_id,
),
)
await add_nodes_and_edges_bulk(
self.driver, [], [], resolved_nodes, [resolved_edge] + invalidated_edges, self.embedder
)
async def remove_episode(self, episode_uuid: str):
# Find the episode to be deleted
episode = await EpisodicNode.get_by_uuid(self.driver, episode_uuid)
# Find edges mentioned by the episode
edges = await EntityEdge.get_by_uuids(self.driver, episode.entity_edges)
# We should only delete edges created by the episode
edges_to_delete: list[EntityEdge] = []
for edge in edges:
if edge.episodes and edge.episodes[0] == episode.uuid:
edges_to_delete.append(edge)
# Find nodes mentioned by the episode
nodes = await get_mentioned_nodes(self.driver, [episode])
# We should delete all nodes that are only mentioned in the deleted episode
nodes_to_delete: list[EntityNode] = []
for node in nodes:
query: LiteralString = 'MATCH (e:Episodic)-[:MENTIONS]->(n:Entity {uuid: $uuid}) RETURN count(*) AS episode_count'
records, _, _ = await self.driver.execute_query(
query, uuid=node.uuid, database_=DEFAULT_DATABASE, routing_='r'
)
for record in records:
if record['episode_count'] == 1:
nodes_to_delete.append(node)
await semaphore_gather(
*[node.delete(self.driver) for node in nodes_to_delete],
max_coroutines=self.max_coroutines,
)
await semaphore_gather(
*[edge.delete(self.driver) for edge in edges_to_delete],
max_coroutines=self.max_coroutines,
)
await episode.delete(self.driver)