graphiti/core/graphiti.py
Pavlo Paliychuk a6fd0ddb75
feat: Initial version of temporal invalidation + tests (#8)
* feat: Initial version of temporal invalidation + tests

* fix: dont run int tests on CI

* fix: dont run int tests on CI

* fix: dont run int tests on CI

* fix: time of day issue

* fix: running non int tests in ci

* fix: running non int tests in ci

* fix: running non int tests in ci

* fix: running non int tests in ci

* fix: running non int tests in ci

* fix: running non int tests in ci

* fix: running non int tests in ci

* revert: Tests structural changes

* chore: Remove idea file

* chore: Get rid of NodesWithEdges class and define a triplet type instead
2024-08-20 16:29:19 -04:00

270 lines
9.8 KiB
Python

import asyncio
from datetime import datetime
import logging
from typing import Callable, LiteralString
from neo4j import AsyncGraphDatabase
from dotenv import load_dotenv
import os
from core.llm_client.config import EMBEDDING_DIM
from core.nodes import EntityNode, EpisodicNode, Node
from core.edges import EntityEdge, EpisodicEdge
from core.utils import (
build_episodic_edges,
retrieve_episodes,
)
from core.llm_client import LLMClient, OpenAIClient, LLMConfig
from core.utils.maintenance.edge_operations import (
extract_edges,
dedupe_extracted_edges,
)
from core.utils.maintenance.node_operations import dedupe_extracted_nodes, extract_nodes
from core.utils.maintenance.temporal_operations import (
prepare_edges_for_invalidation,
invalidate_edges,
)
from core.utils.search.search_utils import (
edge_similarity_search,
entity_fulltext_search,
bfs,
get_relevant_nodes,
get_relevant_edges,
)
logger = logging.getLogger(__name__)
load_dotenv()
class Graphiti:
def __init__(
self, uri: str, user: str, password: str, llm_client: LLMClient | None = None
):
self.driver = AsyncGraphDatabase.driver(uri, auth=(user, password))
self.database = "neo4j"
if llm_client:
self.llm_client = llm_client
else:
self.llm_client = OpenAIClient(
LLMConfig(
api_key=os.getenv("OPENAI_API_KEY"),
model="gpt-4o-mini",
base_url="https://api.openai.com/v1",
)
)
def close(self):
self.driver.close()
async def retrieve_episodes(
self, last_n: int, sources: list[str] | None = "messages"
) -> list[EpisodicNode]:
"""Retrieve the last n episodic nodes from the graph"""
return await retrieve_episodes(self.driver, last_n, sources)
async def add_episode(
self,
name: str,
episode_body: str,
source_description: str,
reference_time: datetime = None,
episode_type="string",
success_callback: Callable | None = None,
error_callback: Callable | None = None,
):
"""Process an episode and update the graph"""
try:
nodes: list[EntityNode] = []
entity_edges: list[EntityEdge] = []
episodic_edges: list[EpisodicEdge] = []
embedder = self.llm_client.client.embeddings
now = datetime.now()
previous_episodes = await self.retrieve_episodes(last_n=3)
episode = EpisodicNode(
name=name,
labels=[],
source="messages",
content=episode_body,
source_description=source_description,
created_at=now,
valid_at=reference_time,
)
extracted_nodes = await extract_nodes(
self.llm_client, episode, previous_episodes
)
# Calculate Embeddings
await asyncio.gather(
*[node.generate_name_embedding(embedder) for node in extracted_nodes]
)
existing_nodes = await get_relevant_nodes(extracted_nodes, self.driver)
logger.info(
f"Extracted nodes: {[(n.name, n.uuid) for n in extracted_nodes]}"
)
new_nodes = await dedupe_extracted_nodes(
self.llm_client, extracted_nodes, existing_nodes
)
logger.info(
f"Deduped touched nodes: {[(n.name, n.uuid) for n in new_nodes]}"
)
nodes.extend(new_nodes)
extracted_edges = await extract_edges(
self.llm_client, episode, new_nodes, previous_episodes
)
await asyncio.gather(
*[edge.generate_embedding(embedder) for edge in extracted_edges]
)
existing_edges = await get_relevant_edges(extracted_edges, self.driver)
logger.info(f"Existing edges: {[(e.name, e.uuid) for e in existing_edges]}")
logger.info(
f"Extracted edges: {[(e.name, e.uuid) for e in extracted_edges]}"
)
deduped_edges = await dedupe_extracted_edges(
self.llm_client, extracted_edges, existing_edges
)
(
old_edges_with_nodes_pending_invalidation,
new_edges_with_nodes,
) = prepare_edges_for_invalidation(
existing_edges=existing_edges, new_edges=deduped_edges, nodes=nodes
)
invalidated_edges = await invalidate_edges(
self.llm_client,
old_edges_with_nodes_pending_invalidation,
new_edges_with_nodes,
)
entity_edges.extend(invalidated_edges)
logger.info(
f"Invalidated edges: {[(e.name, e.uuid) for e in invalidated_edges]}"
)
logger.info(f"Deduped edges: {[(e.name, e.uuid) for e in deduped_edges]}")
entity_edges.extend(deduped_edges)
episodic_edges.extend(
build_episodic_edges(
# There may be an overlap between new_nodes and affected_nodes, so we're deduplicating them
nodes,
episode,
now,
)
)
# Important to append the episode to the nodes at the end so that self referencing episodic edges are not built
logger.info(f"Built episodic edges: {episodic_edges}")
# invalidated_edges = await self.invalidate_edges(
# episode, new_nodes, new_edges, relevant_schema, previous_episodes
# )
# edges.extend(invalidated_edges)
# Future optimization would be using batch operations to save nodes and edges
await episode.save(self.driver)
await asyncio.gather(*[node.save(self.driver) for node in nodes])
await asyncio.gather(*[edge.save(self.driver) for edge in episodic_edges])
await asyncio.gather(*[edge.save(self.driver) for edge in entity_edges])
# for node in nodes:
# if isinstance(node, EntityNode):
# await node.update_summary(self.driver)
if success_callback:
await success_callback(episode)
except Exception as e:
if error_callback:
await error_callback(episode, e)
else:
raise e
async def build_indices(self):
index_queries: list[LiteralString] = [
"CREATE INDEX entity_uuid IF NOT EXISTS FOR (n:Entity) ON (n.uuid)",
"CREATE INDEX episode_uuid IF NOT EXISTS FOR (n:Episodic) ON (n.uuid)",
"CREATE INDEX relation_uuid IF NOT EXISTS FOR ()-[r:RELATES_TO]-() ON (r.uuid)",
"CREATE INDEX mention_uuid IF NOT EXISTS FOR ()-[r:MENTIONS]-() ON (r.uuid)",
"CREATE INDEX name_entity_index IF NOT EXISTS FOR (n:Entity) ON (n.name)",
"CREATE INDEX created_at_entity_index IF NOT EXISTS FOR (n:Entity) ON (n.created_at)",
"CREATE INDEX created_at_episodic_index IF NOT EXISTS FOR (n:Episodic) ON (n.created_at)",
"CREATE INDEX valid_at_episodic_index IF NOT EXISTS FOR (n:Episodic) ON (n.valid_at)",
"CREATE INDEX name_edge_index IF NOT EXISTS FOR ()-[r:RELATES_TO]-() ON (r.name)",
"CREATE INDEX created_at_edge_index IF NOT EXISTS FOR ()-[r:RELATES_TO]-() ON (r.created_at)",
"CREATE INDEX expired_at_edge_index IF NOT EXISTS FOR ()-[r:RELATES_TO]-() ON (r.expired_at)",
"CREATE INDEX valid_at_edge_index IF NOT EXISTS FOR ()-[r:RELATES_TO]-() ON (r.valid_at)",
"CREATE INDEX invalid_at_edge_index IF NOT EXISTS FOR ()-[r:RELATES_TO]-() ON (r.invalid_at)",
]
# Add the range indices
for query in index_queries:
await self.driver.execute_query(query)
# Add the semantic indices
await self.driver.execute_query(
"""
CREATE FULLTEXT INDEX name_and_summary IF NOT EXISTS FOR (n:Entity) ON EACH [n.name, n.summary]
"""
)
await self.driver.execute_query(
"""
CREATE FULLTEXT INDEX name_and_fact IF NOT EXISTS FOR ()-[r:RELATES_TO]-() ON EACH [r.name, r.fact]
"""
)
await self.driver.execute_query(
"""
CREATE VECTOR INDEX fact_embedding IF NOT EXISTS
FOR ()-[r:RELATES_TO]-() ON (r.fact_embedding)
OPTIONS {indexConfig: {
`vector.dimensions`: 1024,
`vector.similarity_function`: 'cosine'
}}
"""
)
await self.driver.execute_query(
"""
CREATE VECTOR INDEX name_embedding IF NOT EXISTS
FOR (n:Entity) ON (n.name_embedding)
OPTIONS {indexConfig: {
`vector.dimensions`: 1024,
`vector.similarity_function`: 'cosine'
}}
"""
)
async def search(self, query: str) -> list[tuple[EntityNode, list[EntityEdge]]]:
text = query.replace("\n", " ")
search_vector = (
(
await self.llm_client.client.embeddings.create(
input=[text], model="text-embedding-3-small"
)
)
.data[0]
.embedding[:EMBEDDING_DIM]
)
edges = await edge_similarity_search(search_vector, self.driver)
nodes = await entity_fulltext_search(query, self.driver)
node_ids = [node.uuid for node in nodes]
for edge in edges:
node_ids.append(edge.source_node_uuid)
node_ids.append(edge.target_node_uuid)
node_ids = list(dict.fromkeys(node_ids))
context = await bfs(node_ids, self.driver)
return context