graphiti/graphiti_core/utils/maintenance/community_operations.py
Daniel Chalef aa6e38856a
[REFACTOR][FIX] Move away from DEFAULT_DATABASE environment variable in favour of driver-config support (dc) (#699)
* fix: remove global DEFAULT_DATABASE usage in favor of driver-specific
config

Fixes bugs introduced in PR #607. This removes reliance on the global
DEFAULT_DATABASE environment variable. It specifies the database within
each driver. PR #607 introduced a Neo4j compatability, as the database
names are different when attempting to support FalkorDB.

This refactor improves compatability across database types and ensures
future reliance by isolating the configuraiton to the driver level.

* fix: make falkordb support optional

This ensures that the the optional dependency and subsequent import is compliant with the graphiti-core project dependencies.

* chore: fmt code

* chore: undo changes to uv.lock

* fix: undo potentially breaking changes to drive interface

* fix: ensure a default database of "None" is provided - falling back to internal default

* chore: ensure default value exists for session and delete_all_indexes

* chore: fix typos and grammar

* chore: update package versions and dependencies in uv.lock and bulk_utils.py

* docs: update database configuration instructions for Neo4j and FalkorDB

Clarified default database names and how to override them in driver constructors. Updated testing requirements to include specific commands for running integration and unit tests.

* fix: ensure params defaults to an empty dictionary in Neo4jDriver

Updated the execute_query method to initialize params as an empty dictionary if not provided, ensuring compatibility with the database configuration.

---------

Co-authored-by: Urmzd <urmzd@dal.ca>
2025-07-10 17:25:39 -04:00

308 lines
9.7 KiB
Python

import asyncio
import logging
from collections import defaultdict
from pydantic import BaseModel
from graphiti_core.driver.driver import GraphDriver
from graphiti_core.edges import CommunityEdge
from graphiti_core.embedder import EmbedderClient
from graphiti_core.helpers import semaphore_gather
from graphiti_core.llm_client import LLMClient
from graphiti_core.nodes import CommunityNode, EntityNode, get_community_node_from_record
from graphiti_core.prompts import prompt_library
from graphiti_core.prompts.summarize_nodes import Summary, SummaryDescription
from graphiti_core.utils.datetime_utils import utc_now
from graphiti_core.utils.maintenance.edge_operations import build_community_edges
MAX_COMMUNITY_BUILD_CONCURRENCY = 10
logger = logging.getLogger(__name__)
class Neighbor(BaseModel):
node_uuid: str
edge_count: int
async def get_community_clusters(
driver: GraphDriver, group_ids: list[str] | None
) -> list[list[EntityNode]]:
community_clusters: list[list[EntityNode]] = []
if group_ids is None:
group_id_values, _, _ = await driver.execute_query(
"""
MATCH (n:Entity WHERE n.group_id IS NOT NULL)
RETURN
collect(DISTINCT n.group_id) AS group_ids
""",
)
group_ids = group_id_values[0]['group_ids'] if group_id_values else []
for group_id in group_ids:
projection: dict[str, list[Neighbor]] = {}
nodes = await EntityNode.get_by_group_ids(driver, [group_id])
for node in nodes:
records, _, _ = await driver.execute_query(
"""
MATCH (n:Entity {group_id: $group_id, uuid: $uuid})-[r:RELATES_TO]-(m: Entity {group_id: $group_id})
WITH count(r) AS count, m.uuid AS uuid
RETURN
uuid,
count
""",
uuid=node.uuid,
group_id=group_id,
)
projection[node.uuid] = [
Neighbor(node_uuid=record['uuid'], edge_count=record['count']) for record in records
]
cluster_uuids = label_propagation(projection)
community_clusters.extend(
list(
await semaphore_gather(
*[EntityNode.get_by_uuids(driver, cluster) for cluster in cluster_uuids]
)
)
)
return community_clusters
def label_propagation(projection: dict[str, list[Neighbor]]) -> list[list[str]]:
# Implement the label propagation community detection algorithm.
# 1. Start with each node being assigned its own community
# 2. Each node will take on the community of the plurality of its neighbors
# 3. Ties are broken by going to the largest community
# 4. Continue until no communities change during propagation
community_map = {uuid: i for i, uuid in enumerate(projection.keys())}
while True:
no_change = True
new_community_map: dict[str, int] = {}
for uuid, neighbors in projection.items():
curr_community = community_map[uuid]
community_candidates: dict[int, int] = defaultdict(int)
for neighbor in neighbors:
community_candidates[community_map[neighbor.node_uuid]] += neighbor.edge_count
community_lst = [
(count, community) for community, count in community_candidates.items()
]
community_lst.sort(reverse=True)
candidate_rank, community_candidate = community_lst[0] if community_lst else (0, -1)
if community_candidate != -1 and candidate_rank > 1:
new_community = community_candidate
else:
new_community = max(community_candidate, curr_community)
new_community_map[uuid] = new_community
if new_community != curr_community:
no_change = False
if no_change:
break
community_map = new_community_map
community_cluster_map = defaultdict(list)
for uuid, community in community_map.items():
community_cluster_map[community].append(uuid)
clusters = [cluster for cluster in community_cluster_map.values()]
return clusters
async def summarize_pair(llm_client: LLMClient, summary_pair: tuple[str, str]) -> str:
# Prepare context for LLM
context = {'node_summaries': [{'summary': summary} for summary in summary_pair]}
llm_response = await llm_client.generate_response(
prompt_library.summarize_nodes.summarize_pair(context), response_model=Summary
)
pair_summary = llm_response.get('summary', '')
return pair_summary
async def generate_summary_description(llm_client: LLMClient, summary: str) -> str:
context = {'summary': summary}
llm_response = await llm_client.generate_response(
prompt_library.summarize_nodes.summary_description(context),
response_model=SummaryDescription,
)
description = llm_response.get('description', '')
return description
async def build_community(
llm_client: LLMClient, community_cluster: list[EntityNode]
) -> tuple[CommunityNode, list[CommunityEdge]]:
summaries = [entity.summary for entity in community_cluster]
length = len(summaries)
while length > 1:
odd_one_out: str | None = None
if length % 2 == 1:
odd_one_out = summaries.pop()
length -= 1
new_summaries: list[str] = list(
await semaphore_gather(
*[
summarize_pair(llm_client, (str(left_summary), str(right_summary)))
for left_summary, right_summary in zip(
summaries[: int(length / 2)], summaries[int(length / 2) :], strict=False
)
]
)
)
if odd_one_out is not None:
new_summaries.append(odd_one_out)
summaries = new_summaries
length = len(summaries)
summary = summaries[0]
name = await generate_summary_description(llm_client, summary)
now = utc_now()
community_node = CommunityNode(
name=name,
group_id=community_cluster[0].group_id,
labels=['Community'],
created_at=now,
summary=summary,
)
community_edges = build_community_edges(community_cluster, community_node, now)
logger.debug((community_node, community_edges))
return community_node, community_edges
async def build_communities(
driver: GraphDriver, llm_client: LLMClient, group_ids: list[str] | None
) -> tuple[list[CommunityNode], list[CommunityEdge]]:
community_clusters = await get_community_clusters(driver, group_ids)
semaphore = asyncio.Semaphore(MAX_COMMUNITY_BUILD_CONCURRENCY)
async def limited_build_community(cluster):
async with semaphore:
return await build_community(llm_client, cluster)
communities: list[tuple[CommunityNode, list[CommunityEdge]]] = list(
await semaphore_gather(
*[limited_build_community(cluster) for cluster in community_clusters]
)
)
community_nodes: list[CommunityNode] = []
community_edges: list[CommunityEdge] = []
for community in communities:
community_nodes.append(community[0])
community_edges.extend(community[1])
return community_nodes, community_edges
async def remove_communities(driver: GraphDriver):
await driver.execute_query(
"""
MATCH (c:Community)
DETACH DELETE c
""",
)
async def determine_entity_community(
driver: GraphDriver, entity: EntityNode
) -> tuple[CommunityNode | None, bool]:
# Check if the node is already part of a community
records, _, _ = await driver.execute_query(
"""
MATCH (c:Community)-[:HAS_MEMBER]->(n:Entity {uuid: $entity_uuid})
RETURN
c.uuid As uuid,
c.name AS name,
c.group_id AS group_id,
c.created_at AS created_at,
c.summary AS summary
""",
entity_uuid=entity.uuid,
)
if len(records) > 0:
return get_community_node_from_record(records[0]), False
# If the node has no community, add it to the mode community of surrounding entities
records, _, _ = await driver.execute_query(
"""
MATCH (c:Community)-[:HAS_MEMBER]->(m:Entity)-[:RELATES_TO]-(n:Entity {uuid: $entity_uuid})
RETURN
c.uuid As uuid,
c.name AS name,
c.group_id AS group_id,
c.created_at AS created_at,
c.summary AS summary
""",
entity_uuid=entity.uuid,
)
communities: list[CommunityNode] = [
get_community_node_from_record(record) for record in records
]
community_map: dict[str, int] = defaultdict(int)
for community in communities:
community_map[community.uuid] += 1
community_uuid = None
max_count = 0
for uuid, count in community_map.items():
if count > max_count:
community_uuid = uuid
max_count = count
if max_count == 0:
return None, False
for community in communities:
if community.uuid == community_uuid:
return community, True
return None, False
async def update_community(
driver: GraphDriver, llm_client: LLMClient, embedder: EmbedderClient, entity: EntityNode
):
community, is_new = await determine_entity_community(driver, entity)
if community is None:
return
new_summary = await summarize_pair(llm_client, (entity.summary, community.summary))
new_name = await generate_summary_description(llm_client, new_summary)
community.summary = new_summary
community.name = new_name
if is_new:
community_edge = (build_community_edges([entity], community, utc_now()))[0]
await community_edge.save(driver)
await community.generate_name_embedding(embedder)
await community.save(driver)