graphiti/graphiti_core/utils/bulk_utils.py
Daniel Chalef c5e52153c4
chore: Fix packaging (#38)
* feat: Update project name and description

The project name and description in the `pyproject.toml` file have been updated to reflect the changes made to the project.

* chore: Update pyproject.toml to include core package

The `pyproject.toml` file has been updated to include the `core` package in the list of packages. This change ensures that the `core` package is included when building the project.

* fix imports

* fix importats
2024-08-25 10:07:50 -07:00

228 lines
7.1 KiB
Python

"""
Copyright 2024, Zep Software, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import asyncio
import typing
from datetime import datetime
from neo4j import AsyncDriver
from numpy import dot
from pydantic import BaseModel
from graphiti_core.edges import Edge, EntityEdge, EpisodicEdge
from graphiti_core.llm_client import LLMClient
from graphiti_core.nodes import EntityNode, EpisodicNode
from graphiti_core.search.search_utils import get_relevant_edges, get_relevant_nodes
from graphiti_core.utils import retrieve_episodes
from graphiti_core.utils.maintenance.edge_operations import (
build_episodic_edges,
dedupe_edge_list,
dedupe_extracted_edges,
extract_edges,
)
from graphiti_core.utils.maintenance.graph_data_operations import EPISODE_WINDOW_LEN
from graphiti_core.utils.maintenance.node_operations import (
dedupe_extracted_nodes,
dedupe_node_list,
extract_nodes,
)
CHUNK_SIZE = 15
class BulkEpisode(BaseModel):
name: str
content: str
source_description: str
episode_type: str
reference_time: datetime
async def retrieve_previous_episodes_bulk(
driver: AsyncDriver, episodes: list[EpisodicNode]
) -> list[tuple[EpisodicNode, list[EpisodicNode]]]:
previous_episodes_list = await asyncio.gather(
*[
retrieve_episodes(driver, episode.valid_at, last_n=EPISODE_WINDOW_LEN)
for episode in episodes
]
)
episode_tuples: list[tuple[EpisodicNode, list[EpisodicNode]]] = [
(episode, previous_episodes_list[i]) for i, episode in enumerate(episodes)
]
return episode_tuples
async def extract_nodes_and_edges_bulk(
llm_client: LLMClient, episode_tuples: list[tuple[EpisodicNode, list[EpisodicNode]]]
) -> tuple[list[EntityNode], list[EntityEdge], list[EpisodicEdge]]:
extracted_nodes_bulk = await asyncio.gather(
*[
extract_nodes(llm_client, episode, previous_episodes)
for episode, previous_episodes in episode_tuples
]
)
episodes, previous_episodes_list = (
[episode[0] for episode in episode_tuples],
[episode[1] for episode in episode_tuples],
)
extracted_edges_bulk = await asyncio.gather(
*[
extract_edges(llm_client, episode, extracted_nodes_bulk[i], previous_episodes_list[i])
for i, episode in enumerate(episodes)
]
)
episodic_edges: list[EpisodicEdge] = []
for i, episode in enumerate(episodes):
episodic_edges += build_episodic_edges(extracted_nodes_bulk[i], episode, episode.created_at)
nodes: list[EntityNode] = []
for extracted_nodes in extracted_nodes_bulk:
nodes += extracted_nodes
edges: list[EntityEdge] = []
for extracted_edges in extracted_edges_bulk:
edges += extracted_edges
return nodes, edges, episodic_edges
async def dedupe_nodes_bulk(
driver: AsyncDriver,
llm_client: LLMClient,
extracted_nodes: list[EntityNode],
) -> tuple[list[EntityNode], dict[str, str]]:
# Compress nodes
nodes, uuid_map = node_name_match(extracted_nodes)
compressed_nodes, compressed_map = await compress_nodes(llm_client, nodes, uuid_map)
existing_nodes = await get_relevant_nodes(compressed_nodes, driver)
nodes, partial_uuid_map, _ = await dedupe_extracted_nodes(
llm_client, compressed_nodes, existing_nodes
)
compressed_map.update(partial_uuid_map)
return nodes, compressed_map
async def dedupe_edges_bulk(
driver: AsyncDriver, llm_client: LLMClient, extracted_edges: list[EntityEdge]
) -> list[EntityEdge]:
# Compress edges
compressed_edges = await compress_edges(llm_client, extracted_edges)
existing_edges = await get_relevant_edges(compressed_edges, driver)
edges = await dedupe_extracted_edges(llm_client, compressed_edges, existing_edges)
return edges
def node_name_match(nodes: list[EntityNode]) -> tuple[list[EntityNode], dict[str, str]]:
uuid_map: dict[str, str] = {}
name_map: dict[str, EntityNode] = {}
for node in nodes:
if node.name in name_map:
uuid_map[node.uuid] = name_map[node.name].uuid
continue
name_map[node.name] = node
return [node for node in name_map.values()], uuid_map
async def compress_nodes(
llm_client: LLMClient, nodes: list[EntityNode], uuid_map: dict[str, str]
) -> tuple[list[EntityNode], dict[str, str]]:
if len(nodes) == 0:
return nodes, uuid_map
anchor = nodes[0]
nodes.sort(key=lambda node: dot(anchor.name_embedding or [], node.name_embedding or []))
node_chunks = [nodes[i : i + CHUNK_SIZE] for i in range(0, len(nodes), CHUNK_SIZE)]
results = await asyncio.gather(*[dedupe_node_list(llm_client, chunk) for chunk in node_chunks])
extended_map = dict(uuid_map)
compressed_nodes: list[EntityNode] = []
for node_chunk, uuid_map_chunk in results:
compressed_nodes += node_chunk
extended_map.update(uuid_map_chunk)
# Check if we have removed all duplicates
if len(compressed_nodes) == len(nodes):
compressed_uuid_map = compress_uuid_map(extended_map)
return compressed_nodes, compressed_uuid_map
return await compress_nodes(llm_client, compressed_nodes, extended_map)
async def compress_edges(llm_client: LLMClient, edges: list[EntityEdge]) -> list[EntityEdge]:
if len(edges) == 0:
return edges
anchor = edges[0]
edges.sort(
key=lambda embedding: dot(anchor.fact_embedding or [], embedding.fact_embedding or [])
)
edge_chunks = [edges[i : i + CHUNK_SIZE] for i in range(0, len(edges), CHUNK_SIZE)]
results = await asyncio.gather(*[dedupe_edge_list(llm_client, chunk) for chunk in edge_chunks])
compressed_edges: list[EntityEdge] = []
for edge_chunk in results:
compressed_edges += edge_chunk
# Check if we have removed all duplicates
if len(compressed_edges) == len(edges):
return compressed_edges
return await compress_edges(llm_client, compressed_edges)
def compress_uuid_map(uuid_map: dict[str, str]) -> dict[str, str]:
# make sure all uuid values aren't mapped to other uuids
compressed_map = {}
for key, uuid in uuid_map.items():
curr_value = uuid
while curr_value in uuid_map:
curr_value = uuid_map[curr_value]
compressed_map[key] = curr_value
return compressed_map
E = typing.TypeVar('E', bound=Edge)
def resolve_edge_pointers(edges: list[E], uuid_map: dict[str, str]):
for edge in edges:
source_uuid = edge.source_node_uuid
target_uuid = edge.target_node_uuid
edge.source_node_uuid = uuid_map.get(source_uuid, source_uuid)
edge.target_node_uuid = uuid_map.get(target_uuid, target_uuid)
return edges