mirror of
https://github.com/getzep/graphiti.git
synced 2025-06-27 02:00:02 +00:00

* feat: Update project name and description The project name and description in the `pyproject.toml` file have been updated to reflect the changes made to the project. * chore: Update pyproject.toml to include core package The `pyproject.toml` file has been updated to include the `core` package in the list of packages. This change ensures that the `core` package is included when building the project. * fix imports * fix importats
170 lines
5.0 KiB
Python
170 lines
5.0 KiB
Python
"""
|
|
Copyright 2024, Zep Software, Inc.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
"""
|
|
|
|
import logging
|
|
from datetime import datetime
|
|
from time import time
|
|
from typing import List
|
|
|
|
from graphiti_core.edges import EntityEdge, EpisodicEdge
|
|
from graphiti_core.llm_client import LLMClient
|
|
from graphiti_core.nodes import EntityNode, EpisodicNode
|
|
from graphiti_core.prompts import prompt_library
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def build_episodic_edges(
|
|
entity_nodes: List[EntityNode],
|
|
episode: EpisodicNode,
|
|
created_at: datetime,
|
|
) -> List[EpisodicEdge]:
|
|
edges: List[EpisodicEdge] = []
|
|
|
|
for node in entity_nodes:
|
|
edge = EpisodicEdge(
|
|
source_node_uuid=episode.uuid,
|
|
target_node_uuid=node.uuid,
|
|
created_at=created_at,
|
|
)
|
|
edges.append(edge)
|
|
|
|
return edges
|
|
|
|
|
|
async def extract_edges(
|
|
llm_client: LLMClient,
|
|
episode: EpisodicNode,
|
|
nodes: list[EntityNode],
|
|
previous_episodes: list[EpisodicNode],
|
|
) -> list[EntityEdge]:
|
|
start = time()
|
|
|
|
# Prepare context for LLM
|
|
context = {
|
|
'episode_content': episode.content,
|
|
'episode_timestamp': (episode.valid_at.isoformat() if episode.valid_at else None),
|
|
'nodes': [
|
|
{'uuid': node.uuid, 'name': node.name, 'summary': node.summary} for node in nodes
|
|
],
|
|
'previous_episodes': [
|
|
{
|
|
'content': ep.content,
|
|
'timestamp': ep.valid_at.isoformat() if ep.valid_at else None,
|
|
}
|
|
for ep in previous_episodes
|
|
],
|
|
}
|
|
|
|
llm_response = await llm_client.generate_response(prompt_library.extract_edges.v2(context))
|
|
edges_data = llm_response.get('edges', [])
|
|
|
|
end = time()
|
|
logger.info(f'Extracted new edges: {edges_data} in {(end - start) * 1000} ms')
|
|
|
|
# Convert the extracted data into EntityEdge objects
|
|
edges = []
|
|
for edge_data in edges_data:
|
|
if edge_data['target_node_uuid'] and edge_data['source_node_uuid']:
|
|
edge = EntityEdge(
|
|
source_node_uuid=edge_data['source_node_uuid'],
|
|
target_node_uuid=edge_data['target_node_uuid'],
|
|
name=edge_data['relation_type'],
|
|
fact=edge_data['fact'],
|
|
episodes=[episode.uuid],
|
|
created_at=datetime.now(),
|
|
valid_at=None,
|
|
invalid_at=None,
|
|
)
|
|
edges.append(edge)
|
|
logger.info(
|
|
f'Created new edge: {edge.name} from (UUID: {edge.source_node_uuid}) to (UUID: {edge.target_node_uuid})'
|
|
)
|
|
|
|
return edges
|
|
|
|
|
|
def create_edge_identifier(
|
|
source_node: EntityNode, edge: EntityEdge, target_node: EntityNode
|
|
) -> str:
|
|
return f'{source_node.name}-{edge.name}-{target_node.name}'
|
|
|
|
|
|
async def dedupe_extracted_edges(
|
|
llm_client: LLMClient,
|
|
extracted_edges: list[EntityEdge],
|
|
existing_edges: list[EntityEdge],
|
|
) -> list[EntityEdge]:
|
|
# Create edge map
|
|
edge_map = {}
|
|
for edge in extracted_edges:
|
|
edge_map[edge.uuid] = edge
|
|
|
|
# Prepare context for LLM
|
|
context = {
|
|
'extracted_edges': [
|
|
{'uuid': edge.uuid, 'name': edge.name, 'fact': edge.fact} for edge in extracted_edges
|
|
],
|
|
'existing_edges': [
|
|
{'uuid': edge.uuid, 'name': edge.name, 'fact': edge.fact} for edge in existing_edges
|
|
],
|
|
}
|
|
|
|
llm_response = await llm_client.generate_response(prompt_library.dedupe_edges.v1(context))
|
|
unique_edge_data = llm_response.get('unique_facts', [])
|
|
logger.info(f'Extracted unique edges: {unique_edge_data}')
|
|
|
|
# Get full edge data
|
|
edges = []
|
|
for unique_edge in unique_edge_data:
|
|
edge = edge_map[unique_edge['uuid']]
|
|
edges.append(edge)
|
|
|
|
return edges
|
|
|
|
|
|
async def dedupe_edge_list(
|
|
llm_client: LLMClient,
|
|
edges: list[EntityEdge],
|
|
) -> list[EntityEdge]:
|
|
start = time()
|
|
|
|
# Create edge map
|
|
edge_map = {}
|
|
for edge in edges:
|
|
edge_map[edge.uuid] = edge
|
|
|
|
# Prepare context for LLM
|
|
context = {'edges': [{'uuid': edge.uuid, 'fact': edge.fact} for edge in edges]}
|
|
|
|
llm_response = await llm_client.generate_response(
|
|
prompt_library.dedupe_edges.edge_list(context)
|
|
)
|
|
unique_edges_data = llm_response.get('unique_facts', [])
|
|
|
|
end = time()
|
|
logger.info(f'Extracted edge duplicates: {unique_edges_data} in {(end - start) * 1000} ms ')
|
|
|
|
# Get full edge data
|
|
unique_edges = []
|
|
for edge_data in unique_edges_data:
|
|
uuid = edge_data['uuid']
|
|
edge = edge_map[uuid]
|
|
edge.fact = edge_data['fact']
|
|
unique_edges.append(edge)
|
|
|
|
return unique_edges
|